Author: Derek Raine
Publisher: Mercury Learning and Information
ISBN: 1683922069
Category : Science
Languages : en
Pages : 471
Book Description
This book is designed as an introduction to the mathematical concepts used to describe fundamental physics principles. Numerous examples and applications enable the reader to master complex mathematical concepts needed to define topics such as relativity, mechanics, and electromagnetics. Features: • Covers all of the mathematical concepts needed to study physics • Includes applications in every chapter • Instructor ancillaries for use as a textbook
Mathematical Physics
Author: Derek Raine
Publisher: Mercury Learning and Information
ISBN: 1683922069
Category : Science
Languages : en
Pages : 471
Book Description
This book is designed as an introduction to the mathematical concepts used to describe fundamental physics principles. Numerous examples and applications enable the reader to master complex mathematical concepts needed to define topics such as relativity, mechanics, and electromagnetics. Features: • Covers all of the mathematical concepts needed to study physics • Includes applications in every chapter • Instructor ancillaries for use as a textbook
Publisher: Mercury Learning and Information
ISBN: 1683922069
Category : Science
Languages : en
Pages : 471
Book Description
This book is designed as an introduction to the mathematical concepts used to describe fundamental physics principles. Numerous examples and applications enable the reader to master complex mathematical concepts needed to define topics such as relativity, mechanics, and electromagnetics. Features: • Covers all of the mathematical concepts needed to study physics • Includes applications in every chapter • Instructor ancillaries for use as a textbook
Introduction to Mathematical Physics
Author: Chun Wa Wong
Publisher: OUP Oxford
ISBN: 0191648604
Category : Science
Languages : en
Pages : 731
Book Description
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.
Publisher: OUP Oxford
ISBN: 0191648604
Category : Science
Languages : en
Pages : 731
Book Description
Mathematical physics provides physical theories with their logical basis and the tools for drawing conclusions from hypotheses. Introduction to Mathematical Physics explains to the reader why and how mathematics is needed in the description of physical events in space. For undergraduates in physics, it is a classroom-tested textbook on vector analysis, linear operators, Fourier series and integrals, differential equations, special functions and functions of a complex variable. Strongly correlated with core undergraduate courses on classical and quantum mechanics and electromagnetism, it helps the student master these necessary mathematical skills. It contains advanced topics of interest to graduate students on relativistic square-root spaces and nonlinear systems. It contains many tables of mathematical formulas and references to useful materials on the Internet. It includes short tutorials on basic mathematical topics to help readers refresh their mathematical knowledge. An appendix on Mathematica encourages the reader to use computer-aided algebra to solve problems in mathematical physics. A free Instructor's Solutions Manual is available to instructors who order the book for course adoption.
Mathematical Physics
Author: Sadri Hassani
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Publisher: Springer Science & Business Media
ISBN: 9780387985794
Category : Science
Languages : en
Pages : 1052
Book Description
For physics students interested in the mathematics they use, and for math students interested in seeing how some of the ideas of their discipline find realization in an applied setting. The presentation strikes a balance between formalism and application, between abstract and concrete. The interconnections among the various topics are clarified both by the use of vector spaces as a central unifying theme, recurring throughout the book, and by putting ideas into their historical context. Enough of the essential formalism is included to make the presentation self-contained.
Introduction to Mathematical Physics
Author: Michael T. Vaughn
Publisher: John Wiley & Sons
ISBN: 3527618864
Category : Science
Languages : en
Pages : 543
Book Description
A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory. Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.
Publisher: John Wiley & Sons
ISBN: 3527618864
Category : Science
Languages : en
Pages : 543
Book Description
A comprehensive survey of all the mathematical methods that should be available to graduate students in physics. In addition to the usual topics of analysis, such as infinite series, functions of a complex variable and some differential equations as well as linear vector spaces, this book includes a more extensive discussion of group theory than can be found in other current textbooks. The main feature of this textbook is its extensive treatment of geometrical methods as applied to physics. With its introduction of differentiable manifolds and a discussion of vectors and forms on such manifolds as part of a first-year graduate course in mathematical methods, the text allows students to grasp at an early stage the contemporary literature on dynamical systems, solitons and related topological solutions to field equations, gauge theories, gravitational theory, and even string theory. Free solutions manual available for lecturers at www.wiley-vch.de/supplements/.
Mathematical Physics
Author: Francis Bitter
Publisher: Courier Corporation
ISBN: 0486435016
Category : Mathematics
Languages : en
Pages : 210
Book Description
Reader-friendly guide offers illustrative examples of the rules of physical science and how they were formulated. Topics include the role of mathematics as the language of physics; nature of mechanical vibrations; harmonic motion and shapes; geometry of the laws of motion; more. 60 figures. 1963 edition.
Publisher: Courier Corporation
ISBN: 0486435016
Category : Mathematics
Languages : en
Pages : 210
Book Description
Reader-friendly guide offers illustrative examples of the rules of physical science and how they were formulated. Topics include the role of mathematics as the language of physics; nature of mechanical vibrations; harmonic motion and shapes; geometry of the laws of motion; more. 60 figures. 1963 edition.
Physics for Mathematicians
Author: Michael Spivak
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Publisher:
ISBN: 9780914098324
Category : Mechanics
Languages : en
Pages : 733
Book Description
Special Functions of Mathematical Physics
Author: NIKIFOROV
Publisher: Springer Science & Business Media
ISBN: 1475715951
Category : Mathematics
Languages : en
Pages : 443
Book Description
With students of Physics chiefly in mind, we have collected the material on special functions that is most important in mathematical physics and quan tum mechanics. We have not attempted to provide the most extensive collec tion possible of information about special functions, but have set ourselves the task of finding an exposition which, based on a unified approach, ensures the possibility of applying the theory in other natural sciences, since it pro vides a simple and effective method for the independent solution of problems that arise in practice in physics, engineering and mathematics. For the American edition we have been able to improve a number of proofs; in particular, we have given a new proof of the basic theorem (§3). This is the fundamental theorem of the book; it has now been extended to cover difference equations of hypergeometric type (§§12, 13). Several sections have been simplified and contain new material. We believe that this is the first time that the theory of classical or thogonal polynomials of a discrete variable on both uniform and nonuniform lattices has been given such a coherent presentation, together with its various applications in physics.
Publisher: Springer Science & Business Media
ISBN: 1475715951
Category : Mathematics
Languages : en
Pages : 443
Book Description
With students of Physics chiefly in mind, we have collected the material on special functions that is most important in mathematical physics and quan tum mechanics. We have not attempted to provide the most extensive collec tion possible of information about special functions, but have set ourselves the task of finding an exposition which, based on a unified approach, ensures the possibility of applying the theory in other natural sciences, since it pro vides a simple and effective method for the independent solution of problems that arise in practice in physics, engineering and mathematics. For the American edition we have been able to improve a number of proofs; in particular, we have given a new proof of the basic theorem (§3). This is the fundamental theorem of the book; it has now been extended to cover difference equations of hypergeometric type (§§12, 13). Several sections have been simplified and contain new material. We believe that this is the first time that the theory of classical or thogonal polynomials of a discrete variable on both uniform and nonuniform lattices has been given such a coherent presentation, together with its various applications in physics.
Introduction to Mathematical Statistical Physics
Author: Robert Adolʹfovich Minlos
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
Publisher: American Mathematical Soc.
ISBN: 0821813374
Category : Mathematics
Languages : en
Pages : 114
Book Description
This book presents a mathematically rigorous approach to the main ideas and phenomena of statistical physics. The introduction addresses the physical motivation, focusing on the basic concept of modern statistical physics, that is the notion of Gibbsian random fields. Properties of Gibbsian fields are analysed in two ranges of physical parameters: "regular" (corresponding to high-temperature and low-density regimes) where no phase transition is exhibited, and "singular" (low temperature regimes) where such transitions occur. Next, a detailed approach to the analysis of the phenomena of phase transitions of the first kind, the Pirogov-Sinai theory, is presented. The author discusses this theory in a general way and illustrates it with the example of a lattice gas with three types of particles. The conclusion gives a brief review of recent developments arising from this theory. The volume is written for the beginner, yet advanced students will benefit from it as well. The book will serve nicely as a supplementary textbook for course study. The prerequisites are an elementary knowledge of mechanics, probability theory and functional analysis.
Theoretical Mechanics; An Introduction to Mathematical Physics (By> Joseph Sweetman Ames and Francis D. Murnaghan
Author: Joseph Sweetman Ames
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 0
Book Description
Publisher:
ISBN:
Category : Mathematical physics
Languages : en
Pages : 0
Book Description
The Functions of Mathematical Physics
Author: Harry Hochstadt
Publisher: Courier Corporation
ISBN: 0486168786
Category : Science
Languages : en
Pages : 354
Book Description
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.
Publisher: Courier Corporation
ISBN: 0486168786
Category : Science
Languages : en
Pages : 354
Book Description
A modern classic, this clearly written, incisive textbook provides a comprehensive, detailed survey of the functions of mathematical physics, a field of study straddling the somewhat artificial boundary between pure and applied mathematics. In the 18th and 19th centuries, the theorists who devoted themselves to this field — pioneers such as Gauss, Euler, Fourier, Legendre, and Bessel — were searching for mathematical solutions to physical problems. Today, although most of the functions have practical applications, in areas ranging from the quantum-theoretical model of the atom to the vibrating membrane, some, such as those related to the theory of discontinuous groups, still remain of purely mathematical interest. Chapters One and Two examine orthogonal polynomials, with sections on such topics as the recurrence formula, the Christoffel-Darboux formula, the Weierstrass approximation theorem, and the application of Hermite polynomials to quantum mechanics. Chapter Three is devoted to the principal properties of the gamma function, including asymptotic expansions and Mellin-Barnes integrals. Chapter Four covers hypergeometric functions, including a review of linear differential equations with regular singular points, and a general method for finding integral representations. Chapters Five and Six are concerned with the Legendre functions and their use in the solutions of Laplace's equation in spherical coordinates, as well as problems in an n-dimension setting. Chapter Seven deals with confluent hypergeometric functions, and Chapter Eight examines, at length, the most important of these — the Bessel functions. Chapter Nine covers Hill's equations, including the expansion theorems.