Introduction to Linear Algebra and Differential Equations

Introduction to Linear Algebra and Differential Equations PDF Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486158314
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

An Introduction to Differential Algebra

An Introduction to Differential Algebra PDF Author: Irving Kaplansky
Publisher:
ISBN:
Category : Abelian groups
Languages : en
Pages : 72

Get Book Here

Book Description


Introduction to Linear Algebra and Differential Equations

Introduction to Linear Algebra and Differential Equations PDF Author: John W. Dettman
Publisher: Courier Corporation
ISBN: 0486158314
Category : Mathematics
Languages : en
Pages : 442

Get Book Here

Book Description
Excellent introductory text focuses on complex numbers, determinants, orthonormal bases, symmetric and hermitian matrices, first order non-linear equations, linear differential equations, Laplace transforms, Bessel functions, more. Includes 48 black-and-white illustrations. Exercises with solutions. Index.

An Introduction to Differential Equations and Their Applications

An Introduction to Differential Equations and Their Applications PDF Author: Stanley J. Farlow
Publisher: Courier Corporation
ISBN: 0486135136
Category : Mathematics
Languages : en
Pages : 642

Get Book Here

Book Description
This introductory text explores 1st- and 2nd-order differential equations, series solutions, the Laplace transform, difference equations, much more. Numerous figures, problems with solutions, notes. 1994 edition. Includes 268 figures and 23 tables.

Differential Topology

Differential Topology PDF Author: David B. Gauld
Publisher: Courier Corporation
ISBN: 0486319075
Category : Mathematics
Languages : en
Pages : 256

Get Book Here

Book Description
This text covers topological spaces and properties, some advanced calculus, differentiable manifolds, orientability, submanifolds and an embedding theorem, tangent spaces, vector fields and integral curves, Whitney's embedding theorem, more. Includes 88 helpful illustrations. 1982 edition.

Galois Theory of Linear Differential Equations

Galois Theory of Linear Differential Equations PDF Author: Marius van der Put
Publisher: Springer Science & Business Media
ISBN: 3642557503
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
From the reviews: "This is a great book, which will hopefully become a classic in the subject of differential Galois theory. [...] the specialist, as well as the novice, have long been missing an introductory book covering also specific and advanced research topics. This gap is filled by the volume under review, and more than satisfactorily." Mathematical Reviews

Asymptotic Differential Algebra and Model Theory of Transseries

Asymptotic Differential Algebra and Model Theory of Transseries PDF Author: Matthias Aschenbrenner
Publisher: Princeton University Press
ISBN: 0691175438
Category : Mathematics
Languages : en
Pages : 873

Get Book Here

Book Description
Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.

Introduction to Differential Equations: Second Edition

Introduction to Differential Equations: Second Edition PDF Author: Michael E. Taylor
Publisher: American Mathematical Soc.
ISBN: 1470467623
Category : Education
Languages : en
Pages : 388

Get Book Here

Book Description
This text introduces students to the theory and practice of differential equations, which are fundamental to the mathematical formulation of problems in physics, chemistry, biology, economics, and other sciences. The book is ideally suited for undergraduate or beginning graduate students in mathematics, and will also be useful for students in the physical sciences and engineering who have already taken a three-course calculus sequence. This second edition incorporates much new material, including sections on the Laplace transform and the matrix Laplace transform, a section devoted to Bessel's equation, and sections on applications of variational methods to geodesics and to rigid body motion. There is also a more complete treatment of the Runge-Kutta scheme, as well as numerous additions and improvements to the original text. Students finishing this book will be well prepare

Introduction to Ordinary Differential Equations

Introduction to Ordinary Differential Equations PDF Author: Albert L. Rabenstein
Publisher: Academic Press
ISBN: 1483226220
Category : Mathematics
Languages : en
Pages : 444

Get Book Here

Book Description
Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Ordinary Differential Equations and Stability Theory:

Ordinary Differential Equations and Stability Theory: PDF Author: David A. Sanchez
Publisher: Courier Dover Publications
ISBN: 0486837599
Category : Mathematics
Languages : en
Pages : 179

Get Book Here

Book Description
This brief modern introduction to the subject of ordinary differential equations emphasizes stability theory. Concisely and lucidly expressed, it is intended as a supplementary text for advanced undergraduates or beginning graduate students who have completed a first course in ordinary differential equations. The author begins by developing the notions of a fundamental system of solutions, the Wronskian, and the corresponding fundamental matrix. Subsequent chapters explore the linear equation with constant coefficients, stability theory for autonomous and nonautonomous systems, and the problems of the existence and uniqueness of solutions and related topics. Problems at the end of each chapter and two Appendixes on special topics enrich the text.

Lectures on Differential Galois Theory

Lectures on Differential Galois Theory PDF Author: Andy R. Magid
Publisher: American Mathematical Soc.
ISBN: 0821870041
Category : Mathematics
Languages : en
Pages : 119

Get Book Here

Book Description
Differential Galois theory studies solutions of differential equations over a differential base field. In much the same way that ordinary Galois theory is the theory of field extensions generated by solutions of (one variable) polynomial equations, differential Galois theory looks at the nature of the differential field extension generated by the solution of differential equations. An additional feature is that the corresponding differential Galois groups (of automorphisms of the extension fixing the base and commuting with the derivation) are algebraic groups. This book deals with the differential Galois theory of linear homogeneous differential equations, whose differential Galois groups are algebraic matrix groups. In addition to providing a convenient path to Galois theory, this approach also leads to the constructive solution of the inverse problem of differential Galois theory for various classes of algebraic groups. Providing a self-contained development and many explicit examples, this book provides a unique approach to differential Galois theory and is suitable as a textbook at the advanced graduate level.