Author: Dominique Expert
Publisher: Springer Science & Business Media
ISBN: 9400752660
Category : Science
Languages : en
Pages : 91
Book Description
Iron plays a key role in biology as essential cofactor of numerous proteins. However, since it is only slightly soluble its bioavailability can be readily compromised under aerobic conditions. Moreover, due to its ability to catalyze the generation of free radicals, iron can also be toxic. Thus, it doesn’t surprise that living organisms have developed sophisticated means for acquiring iron whilst tightly controlling the intracellular concentrations of this metal in response to environmental conditions. Also, the critical role of iron has long been acknowledged in host vertebrate-parasite relationships where both partners compete for the acquisition of this essential element and activate complex signaling cascades to control their iron homeostasis during infection. Following the great interest that the mechanisms regulating the acquisition of iron and the control of iron homeostasis have generated among researchers studying plant-pathogen and legume-rhizobia interactions, this book offers a comprehensive analysis of irons’ various roles in the plant-microbial associations. The introductory chapter stresses the essentiality of iron in biological systems. The second chapter surveys the abundance of information on iron’s pivotal role in microbial plant pathogenesis and defence. Finally, the third chapter reviews the advances in our understanding of iron metabolism in the rhizobia, soil bacteria able to establish a symbiotic association with legumes and carry out nitrogen fixation. Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations is a valuable resource to microbiologists, pathologists and scientists interested in iron uptake and metabolism in microbial pathogenesis, rhizobia legume associations, and plant physiology and immunity.
Molecular Aspects of Iron Metabolism in Pathogenic and Symbiotic Plant-Microbe Associations
Pseudomonas
Author: Juan-Luis Ramos
Publisher: Springer Science & Business Media
ISBN: 1441990860
Category : Science
Languages : en
Pages : 837
Book Description
Pseudomonas comprises three volumes covering the biology of pseudomonads in a wide context, including the niches they inhabit, the taxonomic relations among members of this group, the molecular biology of gene expression in different niches and under different environmental conditions, the analysis of virulence traits in plants, animals and human pathogens as well as the determinants that make some strains useful for biotechnological applications and promotion of plant growth. There has been growing interest in pseudomonads and a particular urge to understand the biology underlying the complex metabolism of these ubiquitous microbes. These bacteria are capable of colonizing a wide range of niches, including the soil, the plant rhizosphere and phylosphere, and animal tissues; more recently they have attracted attention because of their capacity to form biofilms, a characteristic with potentially important medical and environmental implications. The three volumes cover the following topics: - Taxonomy, - Genomics, - Life styles, - Cell Architecture, - Virulence, - Regulation, - Macromolecules, - Alternative Respiratory Substrates, - Catabolism and Biotransformations. Pseudomonas will be of use to all researchers working on these bacteria, particularly those studying microbiology, plant crops, pathogenesis, and chemical engineering. Advanced students in biology, medicine and agronomy will also find these three volumes a valuable reference during their studies.
Publisher: Springer Science & Business Media
ISBN: 1441990860
Category : Science
Languages : en
Pages : 837
Book Description
Pseudomonas comprises three volumes covering the biology of pseudomonads in a wide context, including the niches they inhabit, the taxonomic relations among members of this group, the molecular biology of gene expression in different niches and under different environmental conditions, the analysis of virulence traits in plants, animals and human pathogens as well as the determinants that make some strains useful for biotechnological applications and promotion of plant growth. There has been growing interest in pseudomonads and a particular urge to understand the biology underlying the complex metabolism of these ubiquitous microbes. These bacteria are capable of colonizing a wide range of niches, including the soil, the plant rhizosphere and phylosphere, and animal tissues; more recently they have attracted attention because of their capacity to form biofilms, a characteristic with potentially important medical and environmental implications. The three volumes cover the following topics: - Taxonomy, - Genomics, - Life styles, - Cell Architecture, - Virulence, - Regulation, - Macromolecules, - Alternative Respiratory Substrates, - Catabolism and Biotransformations. Pseudomonas will be of use to all researchers working on these bacteria, particularly those studying microbiology, plant crops, pathogenesis, and chemical engineering. Advanced students in biology, medicine and agronomy will also find these three volumes a valuable reference during their studies.
Advances in Organic Farming
Author: Sanchita Brahma
Publisher: CRC Press
ISBN: 1040099912
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
Organic agriculture contributes significantly to environmental safety and sustainability of land productivity worldwide. This new book provides an understanding of organic farming, discussing the nutritional importance of organic foods, the effect of climate change on organic agriculture, crop management practices, soil and nutrient management, organic seed production and pest and disease management in organic farming. Some specific topics include the economics of organic farming, strategies for reducing greenhouse gas emissions, integrated organic farming systems, biofortification in organic farming, water and weed management, holistic plant breeding, biofertilizers and vermicomposting, organic seed production, and much more. Bridging the gap between literature and practical applications, this comprehensive book provides a plethora of information for academicians, scientists, researchers, students, farmers, NGOs, agriculture entrepreneurs, and progressive farmers in developing a sound knowledge base on organic farming.
Publisher: CRC Press
ISBN: 1040099912
Category : Technology & Engineering
Languages : en
Pages : 676
Book Description
Organic agriculture contributes significantly to environmental safety and sustainability of land productivity worldwide. This new book provides an understanding of organic farming, discussing the nutritional importance of organic foods, the effect of climate change on organic agriculture, crop management practices, soil and nutrient management, organic seed production and pest and disease management in organic farming. Some specific topics include the economics of organic farming, strategies for reducing greenhouse gas emissions, integrated organic farming systems, biofortification in organic farming, water and weed management, holistic plant breeding, biofertilizers and vermicomposting, organic seed production, and much more. Bridging the gap between literature and practical applications, this comprehensive book provides a plethora of information for academicians, scientists, researchers, students, farmers, NGOs, agriculture entrepreneurs, and progressive farmers in developing a sound knowledge base on organic farming.
Abstracts of the Annual Meeting of the American Society for Microbiology
Author: American Society for Microbiology. Annual Meeting
Publisher:
ISBN:
Category : Microbiology
Languages : en
Pages : 594
Book Description
Publisher:
ISBN:
Category : Microbiology
Languages : en
Pages : 594
Book Description
Iron Transport in Microbes, Plants, and Animals
Author: Günther Winkelmann
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 568
Book Description
This first comprehensive treatise on iron transport in bacteria, fungi, plants, and animals summarizes the current state of knowledge on the subject.
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 568
Book Description
This first comprehensive treatise on iron transport in bacteria, fungi, plants, and animals summarizes the current state of knowledge on the subject.
Plant-microbe Interactions 2
Author: Gary Stacey
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Publisher: Springer Science & Business Media
ISBN: 1461560535
Category : Science
Languages : en
Pages : 238
Book Description
Plant-Microbe Interactions, Volume 2 Volume 1 of this series has made its appearance and dealt forcefully with impor tant current topics in the field of plant-microbe interactions. We believe that the quality of those chapters was high and should serve as a focal point for the state of the art as well as an enduring reference. Volume 2 builds upon these accom plishments. Chapter 1 discusses the fascinating lipo-chitin signal molecules from Rhizo bium, aspects regarding their biosynthesis, and the basis for host specificity. These molecules are a cardinal example of how microorganisms influence plant development and stimulate speculation that they have identified a previously un known aspect of plant hormone activity. Chapter 2 continues the discussion of Rhizobium by considering the trafficking of carbon and nitrogen in nodules. Al though the ostensible advantage of nodules to plants is the fixation of atmos pheric nitrogen, the actual process involved in supplying reduced nitrogen to the plant host is complex.
Agro-Environmental Sustainability
Author: Jay Shankar Singh
Publisher: Springer
ISBN: 3319497243
Category : Nature
Languages : en
Pages : 319
Book Description
This two-volume work is a testament to the increasing interest in the role of microbes in sustainable agriculture and food security. Advances in microbial technologies are explored in chapters dealing with topics such as carbon sequestration, soil fertility management, sustainable crop production, and microbial signaling networks. Volume I is a collection of research findings that invites readers to examine the application of microbes in reinstating degraded ecosystems and also in establishing sustainable croplands. Highly readable entries attempt to close the knowledge gap between soil microbial associations and sustainable agriculture. An increase in the global population with changing climate is leading to environments of various abiotic and biotic stresses for agricultural crops. It therefore becomes important to identify the techniques to improve soil fertility and function using different microbial groups such as actinobacteria, microalgae, fluorescent pseudomonads and cyanobacterial systems. These are examined in this volume in greater detail. This work is a significant contribution to research in this increasingly important discipline, and will appeal to researchers in microbiology, agriculture, environmental sciences, and soil and crop sciences.
Publisher: Springer
ISBN: 3319497243
Category : Nature
Languages : en
Pages : 319
Book Description
This two-volume work is a testament to the increasing interest in the role of microbes in sustainable agriculture and food security. Advances in microbial technologies are explored in chapters dealing with topics such as carbon sequestration, soil fertility management, sustainable crop production, and microbial signaling networks. Volume I is a collection of research findings that invites readers to examine the application of microbes in reinstating degraded ecosystems and also in establishing sustainable croplands. Highly readable entries attempt to close the knowledge gap between soil microbial associations and sustainable agriculture. An increase in the global population with changing climate is leading to environments of various abiotic and biotic stresses for agricultural crops. It therefore becomes important to identify the techniques to improve soil fertility and function using different microbial groups such as actinobacteria, microalgae, fluorescent pseudomonads and cyanobacterial systems. These are examined in this volume in greater detail. This work is a significant contribution to research in this increasingly important discipline, and will appeal to researchers in microbiology, agriculture, environmental sciences, and soil and crop sciences.
The Hologenome Concept: Human, Animal and Plant Microbiota
Author: Eugene Rosenberg
Publisher: Springer Science & Business Media
ISBN: 3319042416
Category : Science
Languages : en
Pages : 187
Book Description
Groundbreaking research over the last 10 years has given rise to the hologenome concept of evolution. This concept posits that the holobiont (host plus all of its associated microorganisms) and its hologenome (sum of the genetic information of the host and its symbiotic microorganisms), acting in concert, function as a unique biological entity and therefore as a level of selection in evolution. All animals and plants harbor abundant and diverse microbiota, including viruses. Often the amount of symbiotic microorganisms and their combined genetic information far exceed that of their host. The microbiota with its microbiome, together with the host genome, can be transmitted from one generation to the next and thus propagate the unique properties of the holobiont. The microbial symbionts and the host interact in a cooperative way that affects the health of the holobiont within its environment. Beneficial microbiota protects against pathogens, provides essential nutrients, catabolizes complex polysaccharides, renders harmful chemicals inert, and contributes to the performance of the immune system. In humans and animals, the microbiota also plays a role in behavior. The sum of these cooperative interactions characterizes the holobiont as a unique biological entity. Genetic variation in the hologenome can be brought about by changes in either the host genome or the microbial population genomes (microbiome). Evolution by cooperation can occur by amplifying existing microbes, gaining novel microbiota and by acquiring microbial and viral genes. Under environmental stress, the microbiome can change more rapidly and in response to more processes than the host organism alone and thus influences the evolution of the holobiont. Prebiotics, probiotics, synbiotics and phage therapy are discussed as applied aspects of the hologenome concept.
Publisher: Springer Science & Business Media
ISBN: 3319042416
Category : Science
Languages : en
Pages : 187
Book Description
Groundbreaking research over the last 10 years has given rise to the hologenome concept of evolution. This concept posits that the holobiont (host plus all of its associated microorganisms) and its hologenome (sum of the genetic information of the host and its symbiotic microorganisms), acting in concert, function as a unique biological entity and therefore as a level of selection in evolution. All animals and plants harbor abundant and diverse microbiota, including viruses. Often the amount of symbiotic microorganisms and their combined genetic information far exceed that of their host. The microbiota with its microbiome, together with the host genome, can be transmitted from one generation to the next and thus propagate the unique properties of the holobiont. The microbial symbionts and the host interact in a cooperative way that affects the health of the holobiont within its environment. Beneficial microbiota protects against pathogens, provides essential nutrients, catabolizes complex polysaccharides, renders harmful chemicals inert, and contributes to the performance of the immune system. In humans and animals, the microbiota also plays a role in behavior. The sum of these cooperative interactions characterizes the holobiont as a unique biological entity. Genetic variation in the hologenome can be brought about by changes in either the host genome or the microbial population genomes (microbiome). Evolution by cooperation can occur by amplifying existing microbes, gaining novel microbiota and by acquiring microbial and viral genes. Under environmental stress, the microbiome can change more rapidly and in response to more processes than the host organism alone and thus influences the evolution of the holobiont. Prebiotics, probiotics, synbiotics and phage therapy are discussed as applied aspects of the hologenome concept.
Plant Microbiomes for Sustainable Agriculture
Author: Ajar Nath Yadav
Publisher: Springer Nature
ISBN: 3030384535
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
Publisher: Springer Nature
ISBN: 3030384535
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
This book encompasses the current knowledge of plant microbiomes and their potential biotechnological application for plant growth, crop yield and soil health for sustainable agriculture. The plant microbiomes (rhizospheric, endophytic and epiphytic) play an important role in plant growth, development, and soil health. Plant and rhizospheric soil are a valuable natural resource harbouring hotspots of microbes, and it plays critical roles in the maintenance of global nutrient balance and ecosystem function. The diverse group of microbes is key components of soil–plant systems, where they are engaged in an intense network of interactions in the rhizosphere/endophytic/phyllospheric. The rhizospheric microbial diversity present in rhizospheric zones has a sufficient amount of nutrients release by plant root systems in form of root exudates for growth, development and activities of microbes. The endophytic microbes are referred to those microorganisms, which colonize in the interior of the plant parts, viz root, stem or seeds without causing any harmful effect on host plant. Endophytic microbes enter in host plants mainly through wounds, naturally occurring as a result of plant growth, or through root hairs and at epidermal conjunctions. Endophytes may be transmitted either vertically (directly from parent to offspring) or horizontally (among individuals). The phyllosphere is a common niche for synergism between microbes and plant. The leaf surface has been termed as phyllosphere and zone of leaves inhabited by microorganisms as phyllosphere. The plant part, especially leaves, is exposed to dust and air currents resulting in the establishments of typical flora on their surface aided by the cuticles, waxes and appendages, which help in the anchorage of microorganisms. The phyllospheric microbes may survive or proliferate on leaves depending on extent of influences of material in leaf diffuseness or exudates. The leaf diffuseness contains the principal nutrients factors (amino acids, glucose, fructose and sucrose), and such specialized habitats may provide niche for nitrogen fixation and secretions of substances capable of promoting the growth of plants. The microbes associated with plant as rhizospheric, endophytic and epiphytic with plant growth promoting (PGP) attributes have emerged as an important and promising tool for sustainable agriculture. PGP microbes promote plant growth directly or indirectly, either by releasing plant growth regulators; solubilization of phosphorus, potassium and zinc; biological nitrogen fixation or by producing siderophore, ammonia, HCN and other secondary metabolites which are antagonistic against pathogenic microbes. The PGP microbes belong to different phylum of archaea (Euryarchaeota); bacteria (Acidobacteria, Actinobacteria, Bacteroidetes, Deinococcus-Thermus, Firmicutes and Proteobacteria) and fungi (Ascomycota and Basidiomycota), which include different genera namely Achromobacter, Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconoacetobacter, Haloarcula, Herbaspirillum, Methylobacterium, Paenibacillus, Pantoea, Penicillium, Piriformospora, Planomonospora, Pseudomonas, Rhizobium, Serratia and Streptomyces. These PGP microbes could be used as biofertilizers/bioinoculants at place of chemical fertilizers for sustainable agriculture. The aim of “Plant Microbiomes for Sustainable Agriculture” is to provide the current developments in the understanding of microbial diversity associated with plant systems in the form of rhizospheric, endophytic and epiphytic. The book is useful to scientist, research and students related to microbiology, biotechnology, agriculture, molecular biology, environmental biology and related subjects.
New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research
Author: P.A.H.M. Bakker
Publisher: Springer Science & Business Media
ISBN: 1402067763
Category : Science
Languages : en
Pages : 127
Book Description
In the context of increasing concern for food and environmental quality, use of Plant Growth-Promoting Rhizobacteria (PGPR) for reducing chemical inputs in agriculture is a potentially important issue. This book provides an update by renowned international experts on the most recent advances in the ecology of these important bacteria, the application of innovative methodologies for their study, their interaction with the host plant, and their potential application in agriculture.
Publisher: Springer Science & Business Media
ISBN: 1402067763
Category : Science
Languages : en
Pages : 127
Book Description
In the context of increasing concern for food and environmental quality, use of Plant Growth-Promoting Rhizobacteria (PGPR) for reducing chemical inputs in agriculture is a potentially important issue. This book provides an update by renowned international experts on the most recent advances in the ecology of these important bacteria, the application of innovative methodologies for their study, their interaction with the host plant, and their potential application in agriculture.