An Exploration of Dynamical Systems and Chaos

An Exploration of Dynamical Systems and Chaos PDF Author: John H. Argyris
Publisher: Springer
ISBN: 3662460424
Category : Technology & Engineering
Languages : en
Pages : 884

Get Book Here

Book Description
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany

An Exploration of Dynamical Systems and Chaos

An Exploration of Dynamical Systems and Chaos PDF Author: John H. Argyris
Publisher: Springer
ISBN: 3662460424
Category : Technology & Engineering
Languages : en
Pages : 884

Get Book Here

Book Description
This book is conceived as a comprehensive and detailed text-book on non-linear dynamical systems with particular emphasis on the exploration of chaotic phenomena. The self-contained introductory presentation is addressed both to those who wish to study the physics of chaotic systems and non-linear dynamics intensively as well as those who are curious to learn more about the fascinating world of chaotic phenomena. Basic concepts like Poincaré section, iterated mappings, Hamiltonian chaos and KAM theory, strange attractors, fractal dimensions, Lyapunov exponents, bifurcation theory, self-similarity and renormalisation and transitions to chaos are thoroughly explained. To facilitate comprehension, mathematical concepts and tools are introduced in short sub-sections. The text is supported by numerous computer experiments and a multitude of graphical illustrations and colour plates emphasising the geometrical and topological characteristics of the underlying dynamics. This volume is a completely revised and enlarged second edition which comprises recently obtained research results of topical interest, and has been extended to include a new section on the basic concepts of probability theory. A completely new chapter on fully developed turbulence presents the successes of chaos theory, its limitations as well as future trends in the development of complex spatio-temporal structures. "This book will be of valuable help for my lectures" Hermann Haken, Stuttgart "This text-book should not be missing in any introductory lecture on non-linear systems and deterministic chaos" Wolfgang Kinzel, Würzburg “This well written book represents a comprehensive treatise on dynamical systems. It may serve as reference book for the whole field of nonlinear and chaotic systems and reports in a unique way on scientific developments of recent decades as well as important applications.” Joachim Peinke, Institute of Physics, Carl-von-Ossietzky University Oldenburg, Germany

An Introduction To Chaotic Dynamical Systems

An Introduction To Chaotic Dynamical Systems PDF Author: Robert Devaney
Publisher: CRC Press
ISBN: 0429981937
Category : Mathematics
Languages : en
Pages : 280

Get Book Here

Book Description
The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

Introduction to Discrete Dynamical Systems and Chaos

Introduction to Discrete Dynamical Systems and Chaos PDF Author: Mario Martelli
Publisher: John Wiley & Sons
ISBN: 1118031121
Category : Mathematics
Languages : en
Pages : 347

Get Book Here

Book Description
A timely, accessible introduction to the mathematics of chaos. The past three decades have seen dramatic developments in the theory of dynamical systems, particularly regarding the exploration of chaotic behavior. Complex patterns of even simple processes arising in biology, chemistry, physics, engineering, economics, and a host of other disciplines have been investigated, explained, and utilized. Introduction to Discrete Dynamical Systems and Chaos makes these exciting and important ideas accessible to students and scientists by assuming, as a background, only the standard undergraduate training in calculus and linear algebra. Chaos is introduced at the outset and is then incorporated as an integral part of the theory of discrete dynamical systems in one or more dimensions. Both phase space and parameter space analysis are developed with ample exercises, more than 100 figures, and important practical examples such as the dynamics of atmospheric changes and neural networks. An appendix provides readers with clear guidelines on how to use Mathematica to explore discrete dynamical systems numerically. Selected programs can also be downloaded from a Wiley ftp site (address in preface). Another appendix lists possible projects that can be assigned for classroom investigation. Based on the author's 1993 book, but boasting at least 60% new, revised, and updated material, the present Introduction to Discrete Dynamical Systems and Chaos is a unique and extremely useful resource for all scientists interested in this active and intensely studied field.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: Steven H. Strogatz
Publisher: CRC Press
ISBN: 0429961111
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.

In the Wake of Chaos

In the Wake of Chaos PDF Author: Stephen H. Kellert
Publisher: University of Chicago Press
ISBN: 0226429768
Category : Science
Languages : en
Pages : 190

Get Book Here

Book Description
Chaos theory has captured scientific and popular attention. What began as the discovery of randomness in simple physical systems has become a widespread fascination with "chaotic" models of everything from business cycles to brainwaves to heart attacks. But what exactly does this explosion of new research into chaotic phenomena mean for our understanding of the world? In this timely book, Stephen Kellert takes the first sustained look at the broad intellectual and philosophical questions raised by recent advances in chaos theory—its implications for science as a source of knowledge and for the very meaning of that knowledge itself.

Nonlinear Dynamics and Chaos

Nonlinear Dynamics and Chaos PDF Author: J Hogan
Publisher: CRC Press
ISBN: 1420033832
Category : Mathematics
Languages : en
Pages : 370

Get Book Here

Book Description
Nonlinear dynamics has been successful in explaining complicated phenomena in well-defined low-dimensional systems. Now it is time to focus on real-life problems that are high-dimensional or ill-defined, for example, due to delay, spatial extent, stochasticity, or the limited nature of available data. How can one understand the dynamics of such sys

Discovering Discrete Dynamical Systems

Discovering Discrete Dynamical Systems PDF Author: Aimee Johnson
Publisher: American Mathematical Soc.
ISBN: 1614441243
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
Discovering Discrete Dynamical Systems is a mathematics textbook designed for use in a student-led, inquiry-based course for advanced mathematics majors. Fourteen modules each with an opening exploration, a short exposition and related exercises, and a concluding project guide students to self-discovery on topics such as fixed points and their classifications, chaos and fractals, Julia and Mandelbrot sets in the complex plane, and symbolic dynamics. Topics have been carefully chosen as a means for developing student persistence and skill in exploration, conjecture, and generalization while at the same time providing a coherent introduction to the fundamentals of discrete dynamical systems. This book is written for undergraduate students with the prerequisites for a first analysis course, and it can easily be used by any faculty member in a mathematics department, regardless of area of expertise. Each module starts with an exploration in which the students are asked an open-ended question. This allows the students to make discoveries which lead them to formulate the questions that will be addressed in the exposition and exercises of the module. The exposition is brief and has been written with the intent that a student who has taken, or is ready to take, a course in analysis can read the material independently. The exposition concludes with exercises which have been designed to both illustrate and explore in more depth the ideas covered in the exposition. Each module concludes with a project in which students bring the ideas from the module to bear on a more challenging or in-depth problem. A section entitled "To the Instructor" includes suggestions on how to structure a course in order to realize the inquiry-based intent of the book. The book has also been used successfully as the basis for an independent study course and as a supplementary text for an analysis course with traditional content.

Chaos, Fractals, and Dynamics

Chaos, Fractals, and Dynamics PDF Author: Robert L. Devaney
Publisher: Addison Wesley Publishing Company
ISBN:
Category : Mathematics
Languages : en
Pages : 212

Get Book Here

Book Description
Introduces the mathematical topics of chaos, fractals, and dynamics using a combination of hands-on computer experimentation and precalculas mathmetics. A series of experiments produce fascinating computer graphics images of Julia sets, the Mandelbrot set, and fractals. The basic ideas of dynamics--chaos, iteration, and stability--are illustrated via computer projects.

Chaos

Chaos PDF Author: Andrew Fowler
Publisher: Springer Nature
ISBN: 3030325385
Category : Mathematics
Languages : en
Pages : 311

Get Book Here

Book Description
This is a textbook on chaos and nonlinear dynamics, written by applied mathematicians for applied mathematicians. It aims to tread a middle ground between the mathematician's rigour and the physicist’s pragmatism. While the subject matter is now classical and can be found in many other books, what distinguishes this book is its philosophical approach, its breadth, its conciseness, and its exploration of intellectual byways, as well as its liberal and informative use of illustration. Written at the graduate student level, the book occasionally drifts from classical material to explore new avenues of thought, sometimes in the exercises. A key feature of the book is its holistic approach, encompassing the development of the subject since the time of Poincaré, and including detailed material on maps, homoclinic bifurcations, Hamiltonian systems, as well as more eclectic items such as Julia and Mandelbrot sets. Some of the more involved codes to produce the figures are described in the appendix. Based on lectures to upper undergraduates and beginning graduate students, this textbook is ideally suited for courses at this level and each chapter includes a set of exercises of varying levels of difficulty.

Hyperbolic Chaos

Hyperbolic Chaos PDF Author: Sergey P. Kuznetsov
Publisher: Springer Science & Business Media
ISBN: 3642236669
Category : Science
Languages : en
Pages : 318

Get Book Here

Book Description
"Hyperbolic Chaos: A Physicist’s View” presents recent progress on uniformly hyperbolic attractors in dynamical systems from a physical rather than mathematical perspective (e.g. the Plykin attractor, the Smale – Williams solenoid). The structurally stable attractors manifest strong stochastic properties, but are insensitive to variation of functions and parameters in the dynamical systems. Based on these characteristics of hyperbolic chaos, this monograph shows how to find hyperbolic chaotic attractors in physical systems and how to design a physical systems that possess hyperbolic chaos. This book is designed as a reference work for university professors and researchers in the fields of physics, mechanics, and engineering. Dr. Sergey P. Kuznetsov is a professor at the Department of Nonlinear Processes, Saratov State University, Russia.