Amorphous Semiconducting and Conducting Transparent Metal Oxide Thin Films and Production Thereof

Amorphous Semiconducting and Conducting Transparent Metal Oxide Thin Films and Production Thereof PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the atleast two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Amorphous Semiconducting and Conducting Transparent Metal Oxide Thin Films and Production Thereof

Amorphous Semiconducting and Conducting Transparent Metal Oxide Thin Films and Production Thereof PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the atleast two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Amorphous Semiconducting and Conducting Transparent Metal Oxide Thin Films and Production Thereof

Amorphous Semiconducting and Conducting Transparent Metal Oxide Thin Films and Production Thereof PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Metal oxide thin films and production thereof are disclosed. An exemplary method of producing a metal oxide thin film may comprise introducing at least two metallic elements and oxygen into a process chamber to form a metal oxide. The method may also comprise depositing the metal oxide on a substrate in the process chamber. The method may also comprise simultaneously controlling a ratio of the at least two metallic elements and a stoichiometry of the oxygen during deposition. Exemplary amorphous metal oxide thin films produced according to the methods herein may exhibit highly transparent properties, highly conductive properties, and/or other opto-electronic properties.

Oxide Ultrathin Films

Oxide Ultrathin Films PDF Author: Gianfranco Pacchioni
Publisher: John Wiley & Sons
ISBN: 3527640185
Category : Technology & Engineering
Languages : en
Pages : 526

Get Book Here

Book Description
A wealth of information in one accessible book. Written by international experts from multidisciplinary fields, this in-depth exploration of oxide ultrathin films covers all aspects of these systems, starting with preparation and characterization, and going on to geometrical and electronic structure, as well as applications in current and future systems and devices. From the Contents: Synthesis and Preparation of Oxide Ultrathin Films Characterization Tools of Oxide Ultrathin Films Ordered Oxide Nanostructures on Metal Surfaces Unusual Properties of Oxides and Other Insulators in the Ultrathin Limit Silica and High-K Dielectrics Thin Films in Microelectronics Oxide Passive Films and Corrosion Protection Oxide Films as Catalytic Materials and as Models of Real Catalysts Oxide Films in Spintronics Oxide Ultrathin Films in Solid Oxide Fuel Cells Transparent Conducting and Chromogenic Oxide Films as Solar Energy Materials Oxide Ultrathin Films in Sensor Applications Ferroelectricity in Ultrathin Film Capacitors Titania Thin Films in Biocompatible Materials and Medical Implants Oxide Nanowires for New Chemical Sensor Devices

Solution Processed Metal Oxide Thin Films for Electronic Applications

Solution Processed Metal Oxide Thin Films for Electronic Applications PDF Author: Zheng Cui
Publisher: Elsevier
ISBN: 0128149310
Category : Technology & Engineering
Languages : en
Pages : 180

Get Book Here

Book Description
Solution Processed Metal Oxide Thin Films for Electronic Applications discusses the fundamentals of solution processing materials chemistry techniques as they are applied to metal oxide materials systems for key device applications. The book introduces basic information (materials properties, materials synthesis, barriers), discusses ink formulation and solution processing methods, including sol-gel processing, surface functionalization aspects, and presents a comprehensive accounting on the electronic applications of solution processed metal oxide films, including thin film transistors, photovoltaic cells and other electronics devices and circuits. This is an important reference for those interested in oxide electronics, printed electronics, flexible electronics and large-area electronics. Provides in-depth information on solution processing fundamentals, techniques, considerations and barriers combined with key device applications Reviews important device applications, including transistors, light-emitting diodes, and photovoltaic cells Includes an overview of metal oxide materials systems (semiconductors, nanomaterials and thin films), addressing materials synthesis, properties, limitations and surface aspects

Thin Films and Heterostructures for Oxide Electronics

Thin Films and Heterostructures for Oxide Electronics PDF Author: Satishchandra B. Ogale
Publisher: Springer Science & Business Media
ISBN: 0387260897
Category : Technology & Engineering
Languages : en
Pages : 416

Get Book Here

Book Description
Oxides form a broad subject area of research and technology development which encompasses different disciplines such as materials science, solid state chemistry, physics etc. The aim of this book is to demonstrate the interplay of these fields and to provide an introduction to the techniques and methodologies involving film growth, characterization and device processing. The literature in this field is thus fairly scattered in different research journals covering one or the other aspect of the specific activity. This situation calls for a book that will consolidate this information and thus enable a beginner as well as an expert to get an overall perspective of the field, its foundations, and its projected progress.

Novel Amorphous Iron-dysprosium-terbium-oxide Thin Films

Novel Amorphous Iron-dysprosium-terbium-oxide Thin Films PDF Author: Humaira Taz
Publisher:
ISBN:
Category : Moore's law
Languages : en
Pages : 109

Get Book Here

Book Description
Amorphous oxides which are transparent and conducting find use in display devices and as top electrodes in energy applications, while those which are conducting and magnetic have the potential to be used in spintronics. With the fast approaching limit of Moore’s law, new materials are needed where the spin and polarization of the electrons are coupled. Despite progress in transparent conductors, materials selection is limited by the need to have wide optical bandgap and conduction via s-orbital. In contrast, search for new spintronics materials has picked up only in the last decade. Here we report the synthesis, characterization, and application of a new oxide made from Fe, Tb, and Dy - elements that do not conduct via the s-orbital. Thin films (100 nm) of this oxide were synthesized by pulsed laser deposition (PLD) as a function of varying oxygen pressure, and by electron-beam evaporation as a function of the cation composition, and then annealed under different conditions. Films deposited at 5x10-8 Torr exhibited high optical transparency (90%) and conductivity (~104 S/m). Films deposited at O2 pressures below 1x10-5 Torr were conductive (~104 S/m), magnetic (up to 480 emu/cc), and optically transparent, while the ones above 1x10-5 Torr were optically transparent but insulating and non-magnetic. Changes in the cation stoichiometry showed the films’ transition from being metallic to semiconducting with decreasing Fe content relative to the Lanthanides. However, when a very iron-rich film was annealed through several heating and cooling cycles in low vacuum, the film evolved into a semiconductor that was stable in ambient conditions and showed very high conductivity (2.8x105 S/m) and room temperature magnetism (380 emu/cc). The PLD deposited films were utilized as the ferromagnetic layer for magneto-electric coupling with bismuth ferrite as well as a top electrode for bismuth ferrite capacitors. A giant magneto-resistance (GMR) device made from the Fe-Tb-Dy-oxide and bismuth ferrite showed evidence of magneto-electric coupling at room temperature. The discovery of this oxide not only introduces new materials physics that could be explored and exploited to engineer new multifunctional materials, but the oxide itself proves to be very promising for spintronics device applications.

Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Mohamed Henini
Publisher: Newnes
ISBN: 0123918596
Category : Technology & Engineering
Languages : en
Pages : 745

Get Book Here

Book Description
This multi-contributor handbook discusses Molecular Beam Epitaxy (MBE), an epitaxial deposition technique which involves laying down layers of materials with atomic thicknesses on to substrates. It summarizes MBE research and application in epitaxial growth with close discussion and a ‘how to’ on processing molecular or atomic beams that occur on a surface of a heated crystalline substrate in a vacuum.MBE has expanded in importance over the past thirty years (in terms of unique authors, papers and conferences) from a pure research domain into commercial applications (prototype device structures and more at the advanced research stage). MBE is important because it enables new device phenomena and facilitates the production of multiple layered structures with extremely fine dimensional and compositional control. The techniques can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. This book covers the advances made by MBE both in research and mass production of electronic and optoelectronic devices. It includes new semiconductor materials, new device structures which are commercially available, and many more which are at the advanced research stage. Condenses fundamental science of MBE into a modern reference, speeding up literature review Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research Coverage of MBE as mass production epitaxial technology enhances processing efficiency and throughput for semiconductor industry and nanostructured semiconductor materials research community

The Synthesis, Characterisation and Application of Transparent Conducting Thin Films

The Synthesis, Characterisation and Application of Transparent Conducting Thin Films PDF Author: M. R. Waugh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Transparent conducting thin films of metal oxides, doped metal oxides, and carbon nanotubes (CNTs), have been produced using various deposition techniques, including: Aerosol Assisted Chemical Vapour Deposition (AACVD), Atmospheric Pressure Chemical Vapour Deposition (APCVD), and Spray Coating. The resultant thin films were tested for their performance in a number of applications, including: Low emissivity ('Low-E') glazing, photovoltaic electrode materials, gas sensing and photocatalysis. AACVD was shown as a viable, and attractive, deposition technique for the synthesis of tin oxide, and doped tin oxide thin films, which allows for controllable doping levels, crystallinity, and surface structure. The tailoring of these physical attributes allows for enhanced performance of the functional properties of the films, whereby, a lower growth temperature produced highly transparent, highly conductive coatings with a low haze value for 'Low-E' applications, whereas, higher growth temperatures produced the high electrical conductivity, transparency, and light scattering properties required for high performance electrodes in thin film photovoltaics. In addition, a dual coating methodology was developed using both AACVD, and APCVD, to grow tin oxide thin films in a rapid timescale, but with modified surface structures showing changes to the short range waviness, kurtosis, and the surface area. Growth of carbon nanotubes, using CVD, was investigated over a range of metal catalysts, with varying Pauling electronegativity values, and over a range of temperature, methane, and hydrogen conditions. A growth mechanism has been postulated, whereby, the electronegativity of the metal catalyst, and the solubility and diffusion of the carbon through that catalyst, affects the type and properties of the carbon structure produced. To the authors knowledge, this is the first reported growth of MWCNTs using a chromium solo-metal catalyst, and the first reported growth of the unique 'carbon nanofibres' which were produced using gold and silver metal catalysts. Functionalisation of SWCNTs using a microwave reflux process was shown to yield sulphonate and sulphone modified nanotubes, which are highly soluble in water and able to undergo spray coating to produce carbon nanotube, nanonet transparent conducting thin films. The functionalisation process was shown to be reversible upon heating of the modified nanotubes. AACVD has been deemed unable to produced doped zinc oxide transparent conducting films. However, undoped zinc oxide films were produced. They displayed a high photocatalytic action in the degredation of stearic acid, and a UV light induced superhydrophilicity. The modification and deposition techniques, established throughout this work, were utilised to form transparent, hybrid, metal oxide-CNT coatings, for gas sensing. The hybrid materials displayed enhanced response times to combustible target gases, which has been attributed to the catalytic effects of the exposed carbon nanotube surfaces; and to the spillover of adsorbed oxygen from the active nanotubes to the metal oxide surface.

Chemical Abstracts

Chemical Abstracts PDF Author:
Publisher:
ISBN:
Category : Chemistry
Languages : en
Pages : 2676

Get Book Here

Book Description


U.S. Photovoltaic Patents

U.S. Photovoltaic Patents PDF Author:
Publisher:
ISBN:
Category : Photovoltaic power generation
Languages : en
Pages : 204

Get Book Here

Book Description