Algebraic Methods in Quantum Chemistry and Physics

Algebraic Methods in Quantum Chemistry and Physics PDF Author: Francisco M. Fernandez
Publisher: CRC Press
ISBN: 9780849382925
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Algebraic Methods in Quantum Chemistry and Physics

Algebraic Methods in Quantum Chemistry and Physics PDF Author: Francisco M. Fernandez
Publisher: CRC Press
ISBN: 9780849382925
Category : Science
Languages : en
Pages : 284

Get Book Here

Book Description
Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Algebraic Methods in Quantum Chemistry and Physics

Algebraic Methods in Quantum Chemistry and Physics PDF Author: Francisco M. Fernandez
Publisher: CRC Press
ISBN: 100072266X
Category : Mathematics
Languages : en
Pages : 284

Get Book Here

Book Description
Algebraic Methods in Quantum Chemistry and Physics provides straightforward presentations of selected topics in theoretical chemistry and physics, including Lie algebras and their applications, harmonic oscillators, bilinear oscillators, perturbation theory, numerical solutions of the Schrödinger equation, and parameterizations of the time-evolution operator. The mathematical tools described in this book are presented in a manner that clearly illustrates their application to problems arising in theoretical chemistry and physics. The application techniques are carefully explained with step-by-step instructions that are easy to follow, and the results are organized to facilitate both manual and numerical calculations. Algebraic Methods in Quantum Chemistry and Physics demonstrates how to obtain useful analytical results with elementary algebra and calculus and an understanding of basic quantum chemistry and physics.

Algebraic and Diagrammatic Methods in Many-Fermion Theory

Algebraic and Diagrammatic Methods in Many-Fermion Theory PDF Author: Frank E. Harris
Publisher: Courier Dover Publications
ISBN: 0486837211
Category : Psychology
Languages : en
Pages : 418

Get Book Here

Book Description
This text on the use of electron correlation effects in the description of the electronic structure of atoms, molecules, and crystals is intended for graduate students in physical chemistry and physics. Modern theories of electronic structure and methods of incorporating electron correlation contributions are developed using a diagrammatic and algebraic formulation, and the methods developed in the text are illustrated with examples from molecular and solid state quantum mechanics. A brief Introduction is followed by chapters on operator algebra, the independent-particle model, occupation-number formalism, and diagrams. Additional topics include the configuration-interaction method, the many-body perturbation theory, and the coupled-cluster method.

The variation method in quantum chemistry

The variation method in quantum chemistry PDF Author: Saul Epstein
Publisher: Elsevier
ISBN: 0323157475
Category : Science
Languages : en
Pages : 289

Get Book Here

Book Description
The Variation Method in Quantum Chemistry is generally a description of the basic theorems and points of view of the method. Applications of these theorems are also presented through several variational procedures and concrete examples. The book contains nine concise chapters wherein the first two ones tackle the general concept of the variation method and its applications. Some chapters deal with other theorems such as the Generealized Brillouin and Hellmann-Feynman Theorems. Also covered in the discussion is the relation of the Perturbation Theory and the Variation Method. This book will be of great help to students and researchers studying quantum chemistry.

Many-Body Methods in Chemistry and Physics

Many-Body Methods in Chemistry and Physics PDF Author: Isaiah Shavitt
Publisher: Cambridge University Press
ISBN: 052181832X
Category : Science
Languages : en
Pages : 547

Get Book Here

Book Description
This book describes the mathematical and diagrammatic techniques employed in the popular many-body methods to determine molecular structure, properties and interactions.

Algebraic Theory of Molecules

Algebraic Theory of Molecules PDF Author: F. Iachello
Publisher: Oxford University Press, USA
ISBN: 0195080912
Category : Mathematics
Languages : en
Pages : 262

Get Book Here

Book Description
Algebraic Theory of Molecules presents a fresh look at the mathematics of wave functions that provide the theoretical underpinnings of molecular spectroscopy. Written by renowned authorities in the field, the book demonstrates the advantages of algebraic theory over the more conventional geometric approach to developing the formal quantum mechanics inherent in molecular spectroscopy. Many examples are provided that compare the algebraic and geometric methods, illustrating the relationship between the algebraic approach and current experiments. The authors develop their presentation from a basic level so as to enable newcomers to enter the field while providing enough details and concrete examples to serve as a reference for the expert. Chemical physicists, physical chemists, and spectroscopists will want to read this exciting new approach to molecular spectroscopy.

Quantum Theory for Mathematicians

Quantum Theory for Mathematicians PDF Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 1461471168
Category : Science
Languages : en
Pages : 566

Get Book Here

Book Description
Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Factorization Method in Quantum Mechanics

Factorization Method in Quantum Mechanics PDF Author: Shi-Hai Dong
Publisher: Springer Science & Business Media
ISBN: 1402057962
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
This book introduces the factorization method in quantum mechanics at an advanced level, with the aim of putting mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the reader’s disposal. For this purpose, the text provides a comprehensive description of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in quantum mechanics textbooks.

Mathematics for Quantum Chemistry

Mathematics for Quantum Chemistry PDF Author: Jay Martin Anderson
Publisher: Courier Corporation
ISBN: 0486151484
Category : Science
Languages : en
Pages : 177

Get Book Here

Book Description
Introduction to problems of molecular structure and motion covers calculus of orthogonal functions, algebra of vector spaces, and Lagrangian and Hamiltonian formulation of classical mechanics. Answers to problems. 1966 edition.

Mathematical Methods in Quantum Mechanics

Mathematical Methods in Quantum Mechanics PDF Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).