Author: Andrew Ranicki
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Algebraic and Geometric Surgery
Author: Andrew Ranicki
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Publisher: Oxford University Press
ISBN: 9780198509240
Category : Mathematics
Languages : en
Pages : 396
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students, who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, co-bordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
A Course on Surgery Theory
Author: Stanley Chang
Publisher: Princeton University Press
ISBN: 069116049X
Category : Mathematics
Languages : en
Pages : 442
Book Description
Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and respected series in science published, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. Book jacket.
Publisher: Princeton University Press
ISBN: 069116049X
Category : Mathematics
Languages : en
Pages : 442
Book Description
Princeton University Press is proud to have published the Annals of Mathematics Studies since 1940. One of the oldest and respected series in science published, it has included many of the most important and influential mathematical works of the twentieth century. The series continues this tradition as Princeton University Press publishes the major works of the twenty-first century. Book jacket.
Exact Sequences in the Algebraic Theory of Surgery
Author: Andrew Ranicki
Publisher:
ISBN: 9780691082769
Category : Mathematics
Languages : en
Pages : 863
Book Description
The Description for this book, Exact Sequences in the Algebraic Theory of Surgery. (MN-26): , will be forthcoming.
Publisher:
ISBN: 9780691082769
Category : Mathematics
Languages : en
Pages : 863
Book Description
The Description for this book, Exact Sequences in the Algebraic Theory of Surgery. (MN-26): , will be forthcoming.
Surgery on Compact Manifolds
Author: Charles Terence Clegg Wall
Publisher: American Mathematical Soc.
ISBN: 0821809423
Category : Mathematics
Languages : en
Pages : 321
Book Description
The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.
Publisher: American Mathematical Soc.
ISBN: 0821809423
Category : Mathematics
Languages : en
Pages : 321
Book Description
The publication of this book in 1970 marked the culmination of a period in the history of the topology of manifolds. This edition, based on the original text, is supplemented by notes on subsequent developments and updated references and commentaries.
Algebraic and Geometric Surgery
Author: Andrew Ranicki
Publisher: Clarendon Press
ISBN: 0191545244
Category : Mathematics
Languages : en
Pages : 386
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Publisher: Clarendon Press
ISBN: 0191545244
Category : Mathematics
Languages : en
Pages : 386
Book Description
This book is an introduction to surgery theory: the standard classification method for high-dimensional manifolds. It is aimed at graduate students who have already had a basic topology course, and would now like to understand the topology of high-dimensional manifolds. This text contains entry-level accounts of the various prerequisites of both algebra and topology, including basic homotopy and homology, Poincare duality, bundles, cobordism, embeddings, immersions, Whitehead torsion, Poincare complexes, spherical fibrations and quadratic forms and formations. While concentrating on the basic mechanics of surgery, this book includes many worked examples, useful drawings for illustration of the algebra and references for further reading.
Algebraic L-theory and Topological Manifolds
Author: Andrew Ranicki
Publisher: Cambridge University Press
ISBN: 9780521420242
Category : Mathematics
Languages : en
Pages : 372
Book Description
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.
Publisher: Cambridge University Press
ISBN: 9780521420242
Category : Mathematics
Languages : en
Pages : 372
Book Description
Assuming no previous acquaintance with surgery theory and justifying all the algebraic concepts used by their relevance to topology, Dr Ranicki explains the applications of quadratic forms to the classification of topological manifolds, in a unified algebraic framework.
High-dimensional Knot Theory
Author: Andrew Ranicki
Publisher: Springer Science & Business Media
ISBN: 3662120119
Category : Mathematics
Languages : en
Pages : 669
Book Description
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
Publisher: Springer Science & Business Media
ISBN: 3662120119
Category : Mathematics
Languages : en
Pages : 669
Book Description
Bringing together many results previously scattered throughout the research literature into a single framework, this work concentrates on the application of the author's algebraic theory of surgery to provide a unified treatment of the invariants of codimension 2 embeddings, generalizing the Alexander polynomials and Seifert forms of classical knot theory.
The Algebraic Characterization of Geometric 4-Manifolds
Author: J. A. Hillman
Publisher: Cambridge University Press
ISBN: 0521467780
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book describes work on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces.
Publisher: Cambridge University Press
ISBN: 0521467780
Category : Mathematics
Languages : en
Pages : 184
Book Description
This book describes work on the characterization of closed 4-manifolds in terms of familiar invariants such as Euler characteristic, fundamental group, and Stiefel-Whitney classes. Using techniques from homological group theory, the theory of 3-manifolds and topological surgery, infrasolvmanifolds are characterized up to homeomorphism, and surface bundles are characterized up to simple homotopy equivalence. Non-orientable cases are also considered wherever possible, and in the final chapter the results obtained earlier are applied to 2-knots and complex analytic surfaces.
Surgery on Simply-Connected Manifolds
Author: William Browder
Publisher: Springer Science & Business Media
ISBN: 364250020X
Category : Mathematics
Languages : en
Pages : 141
Book Description
This book is an exposition of the technique of surgery on simply-connected smooth manifolds. Systematic study of differentiable manifolds using these ideas was begun by Milnor [45] and Wallace [68] and developed extensively in the last ten years. It is now possible to give a reasonably complete theory of simply-connected manifolds of dimension ~ 5 using this approach and that is what I will try to begin here. The emphasis has been placed on stating and proving the general results necessary to apply this method in various contexts. In Chapter II, these results are stated, and then applications are given to characterizing the homotopy type of differentiable manifolds and classifying manifolds within a given homotopy type. This theory was first extensively developed in Kervaire and Milnor [34] in the case of homotopy spheres, globalized by S. P. Novikov [49] and the author [6] for closed 1-connected manifolds, and extended to the bounded case by Wall [65] and Golo [23]. The thesis of Sullivan [62] reformed the theory in an elegant way in terms of classifying spaces.
Publisher: Springer Science & Business Media
ISBN: 364250020X
Category : Mathematics
Languages : en
Pages : 141
Book Description
This book is an exposition of the technique of surgery on simply-connected smooth manifolds. Systematic study of differentiable manifolds using these ideas was begun by Milnor [45] and Wallace [68] and developed extensively in the last ten years. It is now possible to give a reasonably complete theory of simply-connected manifolds of dimension ~ 5 using this approach and that is what I will try to begin here. The emphasis has been placed on stating and proving the general results necessary to apply this method in various contexts. In Chapter II, these results are stated, and then applications are given to characterizing the homotopy type of differentiable manifolds and classifying manifolds within a given homotopy type. This theory was first extensively developed in Kervaire and Milnor [34] in the case of homotopy spheres, globalized by S. P. Novikov [49] and the author [6] for closed 1-connected manifolds, and extended to the bounded case by Wall [65] and Golo [23]. The thesis of Sullivan [62] reformed the theory in an elegant way in terms of classifying spaces.
Ends of Complexes
Author: Bruce Hughes
Publisher: Cambridge University Press
ISBN: 0521576253
Category : Mathematics
Languages : en
Pages : 384
Book Description
A systematic exposition of the theory and practice of ends of manifolds and CW complexes, not previously available.
Publisher: Cambridge University Press
ISBN: 0521576253
Category : Mathematics
Languages : en
Pages : 384
Book Description
A systematic exposition of the theory and practice of ends of manifolds and CW complexes, not previously available.