Algebra, Analysis, and Associated Topics

Algebra, Analysis, and Associated Topics PDF Author: Sandeep Singh
Publisher: Springer Nature
ISBN: 3031190823
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
The chapters in this contributed volume explore new results and existing problems in algebra, analysis, and related topics. This broad coverage will help generate new ideas to solve various challenges that face researchers in pure mathematics. Specific topics covered include maximal rotational hypersurfaces, k-Horadam sequences, quantum dynamical semigroups, and more. Additionally, several applications of algebraic number theory and analysis are presented. Algebra, Analysis, and Associated Topics will appeal to researchers, graduate students, and engineers interested in learning more about the impact pure mathematics has on various fields.

Algebra, Analysis, and Associated Topics

Algebra, Analysis, and Associated Topics PDF Author: Sandeep Singh
Publisher: Springer Nature
ISBN: 3031190823
Category : Mathematics
Languages : en
Pages : 242

Get Book Here

Book Description
The chapters in this contributed volume explore new results and existing problems in algebra, analysis, and related topics. This broad coverage will help generate new ideas to solve various challenges that face researchers in pure mathematics. Specific topics covered include maximal rotational hypersurfaces, k-Horadam sequences, quantum dynamical semigroups, and more. Additionally, several applications of algebraic number theory and analysis are presented. Algebra, Analysis, and Associated Topics will appeal to researchers, graduate students, and engineers interested in learning more about the impact pure mathematics has on various fields.

Clifford Algebras in Analysis and Related Topics

Clifford Algebras in Analysis and Related Topics PDF Author: John Ryan
Publisher: CRC Press
ISBN: 9780849384813
Category : Mathematics
Languages : en
Pages : 384

Get Book Here

Book Description
This new book contains the most up-to-date and focused description of the applications of Clifford algebras in analysis, particularly classical harmonic analysis. It is the first single volume devoted to applications of Clifford analysis to other aspects of analysis. All chapters are written by world authorities in the area. Of particular interest is the contribution of Professor Alan McIntosh. He gives a detailed account of the links between Clifford algebras, monogenic and harmonic functions and the correspondence between monogenic functions and holomorphic functions of several complex variables under Fourier transforms. He describes the correspondence between algebras of singular integrals on Lipschitz surfaces and functional calculi of Dirac operators on these surfaces. He also discusses links with boundary value problems over Lipschitz domains. Other specific topics include Hardy spaces and compensated compactness in Euclidean space; applications to acoustic scattering and Galerkin estimates; scattering theory for orthogonal wavelets; applications of the conformal group and Vahalen matrices; Newmann type problems for the Dirac operator; plus much, much more! Clifford Algebras in Analysis and Related Topics also contains the most comprehensive section on open problems available. The book presents the most detailed link between Clifford analysis and classical harmonic analysis. It is a refreshing break from the many expensive and lengthy volumes currently found on the subject.

Topics in Algebra and Analysis

Topics in Algebra and Analysis PDF Author: Radmila Bulajich Manfrino
Publisher: Birkhäuser
ISBN: 331911946X
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
The techniques presented here are useful for solving mathematical contest problems in algebra and analysis. Most of the examples and exercises that appear in the book originate from mathematical Olympiad competitions around the world. In the first four chapters the authors cover material for competitions at high school level. The level advances with the chapters. The topics explored include polynomials, functional equations, sequences and an elementary treatment of complex numbers. The final chapters provide a comprehensive list of problems posed at national and international contests in recent years, and solutions to all exercises and problems presented in the book. It helps students in preparing for national and international mathematical contests form high school level to more advanced competitions and will also be useful for their first year of mathematical studies at the university. It will be of interest to teachers in college and university level, and trainers of the mathematical Olympiads.

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers

Analysis and Algebra on Differentiable Manifolds: A Workbook for Students and Teachers PDF Author: P.M. Gadea
Publisher: Springer Science & Business Media
ISBN: 9048135648
Category : Mathematics
Languages : en
Pages : 446

Get Book Here

Book Description
A famous Swiss professor gave a student’s course in Basel on Riemann surfaces. After a couple of lectures, a student asked him, “Professor, you have as yet not given an exact de nition of a Riemann surface.” The professor answered, “With Riemann surfaces, the main thing is to UNDERSTAND them, not to de ne them.” The student’s objection was reasonable. From a formal viewpoint, it is of course necessary to start as soon as possible with strict de nitions, but the professor’s - swer also has a substantial background. The pure de nition of a Riemann surface— as a complex 1-dimensional complex analytic manifold—contributes little to a true understanding. It takes a long time to really be familiar with what a Riemann s- face is. This example is typical for the objects of global analysis—manifolds with str- tures. There are complex concrete de nitions but these do not automatically explain what they really are, what we can do with them, which operations they really admit, how rigid they are. Hence, there arises the natural question—how to attain a deeper understanding? One well-known way to gain an understanding is through underpinning the d- nitions, theorems and constructions with hierarchies of examples, counterexamples and exercises. Their choice, construction and logical order is for any teacher in global analysis an interesting, important and fun creating task.

Abstract Algebra

Abstract Algebra PDF Author: I. N. Herstein
Publisher: Macmillan College
ISBN:
Category : Mathematics
Languages : en
Pages : 322

Get Book Here

Book Description


Algebraic Topology and Related Topics

Algebraic Topology and Related Topics PDF Author: Mahender Singh
Publisher: Springer
ISBN: 9811357420
Category : Mathematics
Languages : en
Pages : 318

Get Book Here

Book Description
This book highlights the latest advances in algebraic topology, from homotopy theory, braid groups, configuration spaces and toric topology, to transformation groups and the adjoining area of knot theory. It consists of well-written original research papers and survey articles by subject experts, most of which were presented at the “7th East Asian Conference on Algebraic Topology” held at the Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India, from December 1 to 6, 2017. Algebraic topology is a broad area of mathematics that has seen enormous developments over the past decade, and as such this book is a valuable resource for graduate students and researchers working in the field.

Measure, Integration & Real Analysis

Measure, Integration & Real Analysis PDF Author: Sheldon Axler
Publisher: Springer Nature
ISBN: 3030331431
Category : Mathematics
Languages : en
Pages : 430

Get Book Here

Book Description
This open access textbook welcomes students into the fundamental theory of measure, integration, and real analysis. Focusing on an accessible approach, Axler lays the foundations for further study by promoting a deep understanding of key results. Content is carefully curated to suit a single course, or two-semester sequence of courses, creating a versatile entry point for graduate studies in all areas of pure and applied mathematics. Motivated by a brief review of Riemann integration and its deficiencies, the text begins by immersing students in the concepts of measure and integration. Lebesgue measure and abstract measures are developed together, with each providing key insight into the main ideas of the other approach. Lebesgue integration links into results such as the Lebesgue Differentiation Theorem. The development of products of abstract measures leads to Lebesgue measure on Rn. Chapters on Banach spaces, Lp spaces, and Hilbert spaces showcase major results such as the Hahn–Banach Theorem, Hölder’s Inequality, and the Riesz Representation Theorem. An in-depth study of linear maps on Hilbert spaces culminates in the Spectral Theorem and Singular Value Decomposition for compact operators, with an optional interlude in real and complex measures. Building on the Hilbert space material, a chapter on Fourier analysis provides an invaluable introduction to Fourier series and the Fourier transform. The final chapter offers a taste of probability. Extensively class tested at multiple universities and written by an award-winning mathematical expositor, Measure, Integration & Real Analysis is an ideal resource for students at the start of their journey into graduate mathematics. A prerequisite of elementary undergraduate real analysis is assumed; students and instructors looking to reinforce these ideas will appreciate the electronic Supplement for Measure, Integration & Real Analysis that is freely available online. For errata and updates, visit https://measure.axler.net/

No Bullshit Guide to Linear Algebra

No Bullshit Guide to Linear Algebra PDF Author: Ivan Savov
Publisher:
ISBN: 9780992001025
Category : MATHEMATICS
Languages : en
Pages : 596

Get Book Here

Book Description
This textbook covers the material for an undergraduate linear algebra course: vectors, matrices, linear transformations, computational techniques, geometric constructions, and theoretical foundations. The explanations are given in an informal conversational tone. The book also contains 100+ problems and exercises with answers and solutions. A special feature of this textbook is the prerequisites chapter that covers topics from high school math, which are necessary for learning linear algebra. The presence of this chapter makes the book suitable for beginners and the general audience-readers need not be math experts to read this book. Another unique aspect of the book are the applications chapters (Ch 7, 8, and 9) that discuss applications of linear algebra to engineering, computer science, economics, chemistry, machine learning, and even quantum mechanics.

Category Theory in Context

Category Theory in Context PDF Author: Emily Riehl
Publisher: Courier Dover Publications
ISBN: 0486820807
Category : Mathematics
Languages : en
Pages : 273

Get Book Here

Book Description
Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

Introduction to Mathematical Analysis

Introduction to Mathematical Analysis PDF Author: Igor Kriz
Publisher: Springer Science & Business Media
ISBN: 3034806361
Category : Mathematics
Languages : en
Pages : 517

Get Book Here

Book Description
The book begins at the level of an undergraduate student assuming only basic knowledge of calculus in one variable. It rigorously treats topics such as multivariable differential calculus, Lebesgue integral, vector calculus and differential equations. After having built on a solid foundation of topology and linear algebra, the text later expands into more advanced topics such as complex analysis, differential forms, calculus of variations, differential geometry and even functional analysis. Overall, this text provides a unique and well-rounded introduction to the highly developed and multi-faceted subject of mathematical analysis, as understood by a mathematician today.​