Author: Simeon Andrew Ning
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 146
Book Description
Formation flight has the potential to significantly reduce the fuel consumption of long range flights, even with existing aircraft. This research explores a safer approach to formation flying of transport aircraft, which we term extended formation flight. Extended formations take advantage of the persistence of cruise wakes and extend the streamwise separation between the aircraft by at least five wingspans. Classical aerodynamic theory suggests that the total induced drag of the formation should not change as the streamwise separation is increased, but the large separation distances of extended formation flight violate the simple assumptions of these theorems. At large distances, considerations such as wake rollup, atmospheric effects on circulation decay, and vortex motion become important to consider. We first examine the wake rollup process in the context of extended formations and develop an appropriate physics-based model. Using this model, this dissertation addresses three aspects of formation flight: longitudinally extended formations, compressibility effects, and formations of heterogeneous aircraft. Uncertainty analysis is used to investigate the induced drag savings of extended formations in the presence of variation in atmospheric properties, limitations of positioning accuracy, and uncertainty in model parameters. Next, the methodology is integrated with an Euler solver to assess the impact of compressibility while flying in formation. Finally, we examine the important considerations for optimally arranging formations of non-identical aircraft.
Aircraft Drag Reduction Through Extended Formation Flight
Author: Simeon Andrew Ning
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 146
Book Description
Formation flight has the potential to significantly reduce the fuel consumption of long range flights, even with existing aircraft. This research explores a safer approach to formation flying of transport aircraft, which we term extended formation flight. Extended formations take advantage of the persistence of cruise wakes and extend the streamwise separation between the aircraft by at least five wingspans. Classical aerodynamic theory suggests that the total induced drag of the formation should not change as the streamwise separation is increased, but the large separation distances of extended formation flight violate the simple assumptions of these theorems. At large distances, considerations such as wake rollup, atmospheric effects on circulation decay, and vortex motion become important to consider. We first examine the wake rollup process in the context of extended formations and develop an appropriate physics-based model. Using this model, this dissertation addresses three aspects of formation flight: longitudinally extended formations, compressibility effects, and formations of heterogeneous aircraft. Uncertainty analysis is used to investigate the induced drag savings of extended formations in the presence of variation in atmospheric properties, limitations of positioning accuracy, and uncertainty in model parameters. Next, the methodology is integrated with an Euler solver to assess the impact of compressibility while flying in formation. Finally, we examine the important considerations for optimally arranging formations of non-identical aircraft.
Publisher: Stanford University
ISBN:
Category :
Languages : en
Pages : 146
Book Description
Formation flight has the potential to significantly reduce the fuel consumption of long range flights, even with existing aircraft. This research explores a safer approach to formation flying of transport aircraft, which we term extended formation flight. Extended formations take advantage of the persistence of cruise wakes and extend the streamwise separation between the aircraft by at least five wingspans. Classical aerodynamic theory suggests that the total induced drag of the formation should not change as the streamwise separation is increased, but the large separation distances of extended formation flight violate the simple assumptions of these theorems. At large distances, considerations such as wake rollup, atmospheric effects on circulation decay, and vortex motion become important to consider. We first examine the wake rollup process in the context of extended formations and develop an appropriate physics-based model. Using this model, this dissertation addresses three aspects of formation flight: longitudinally extended formations, compressibility effects, and formations of heterogeneous aircraft. Uncertainty analysis is used to investigate the induced drag savings of extended formations in the presence of variation in atmospheric properties, limitations of positioning accuracy, and uncertainty in model parameters. Next, the methodology is integrated with an Euler solver to assess the impact of compressibility while flying in formation. Finally, we examine the important considerations for optimally arranging formations of non-identical aircraft.
Computational Aerodynamic Modeling of Aerospace Vehicles
Author: Mehdi Ghoreyshi
Publisher: MDPI
ISBN: 3038976105
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
Publisher: MDPI
ISBN: 3038976105
Category : Technology & Engineering
Languages : en
Pages : 294
Book Description
Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.
An Overview of Flight Test Results for a Formation Flight Autopilot
Author:
Publisher:
ISBN:
Category : Automatic pilot (Airplanes)
Languages : en
Pages : 22
Book Description
The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft.
Publisher:
ISBN:
Category : Automatic pilot (Airplanes)
Languages : en
Pages : 22
Book Description
The first flight test phase of the NASA Dryden Flight Research Center Autonomous Formation Flight project has successfully demonstrated precision autonomous station-keeping of an F/A-18 research airplane with a second F/A-18 airplane. Blended inertial navigation system (INS) and global positioning system (GPS) measurements have been communicated across an air-to-air telemetry link and used to compute relative-position estimates. A precision research formation autopilot onboard the trailing airplane controls lateral and vertical spacing while the leading airplane operates under production autopilot control. Four research autopilot gain sets have been designed and flight-tested, and each exceeds the project design requirement of steady-state tracking accuracy within 1 standard deviation of 10 ft.
National Academy of Sciences’ decadal plan for aeronautics : hearings
Author:
Publisher: DIANE Publishing
ISBN: 9781422322444
Category :
Languages : en
Pages : 440
Book Description
Publisher: DIANE Publishing
ISBN: 9781422322444
Category :
Languages : en
Pages : 440
Book Description
Decadal Survey of Civil Aeronautics
Author: National Research Council
Publisher: National Academies Press
ISBN: 0309101581
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
The U.S. air transportation system is very important for our economic well-being and national security. The nation is also the global leader in civil and military aeronautics, a position that needs to be maintained to help assure a strong future for the domestic and international air transportation system. Strong action is needed, however, to ensure that leadership role continues. To that end, the Congress and NASA requested the NRC to undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. This report presents a set of strategic objectives for the next decade of R&T. It provides a set of high-priority R&T challengesâ€"-characterized by five common themesâ€"-for both NASA and non-NASA researchers, and an analysis of key barriers that must be overcome to reach the strategic objectives. The report also notes the importance of synergies between civil aeronautics R&T objectives and those of national security.
Publisher: National Academies Press
ISBN: 0309101581
Category : Technology & Engineering
Languages : en
Pages : 212
Book Description
The U.S. air transportation system is very important for our economic well-being and national security. The nation is also the global leader in civil and military aeronautics, a position that needs to be maintained to help assure a strong future for the domestic and international air transportation system. Strong action is needed, however, to ensure that leadership role continues. To that end, the Congress and NASA requested the NRC to undertake a decadal survey of civil aeronautics research and technology (R&T) priorities that would help NASA fulfill its responsibility to preserve U.S. leadership in aeronautics technology. This report presents a set of strategic objectives for the next decade of R&T. It provides a set of high-priority R&T challengesâ€"-characterized by five common themesâ€"-for both NASA and non-NASA researchers, and an analysis of key barriers that must be overcome to reach the strategic objectives. The report also notes the importance of synergies between civil aeronautics R&T objectives and those of national security.
The National Academy of Sciences' Decadal Plan for Aeronautics
Author: United States. Congress. House. Committee on Science. Subcommittee on Space and Aeronautics
Publisher:
ISBN:
Category : Electronic government information
Languages : en
Pages : 440
Book Description
Publisher:
ISBN:
Category : Electronic government information
Languages : en
Pages : 440
Book Description
Research Engineering
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 80
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 80
Book Description
Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research
Author:
Publisher: Jeffrey Frank Jones
ISBN:
Category :
Languages : en
Pages : 3840
Book Description
Publisher: Jeffrey Frank Jones
ISBN:
Category :
Languages : en
Pages : 3840
Book Description
NASA Tech Briefs
Author:
Publisher:
ISBN:
Category : Technology
Languages : en
Pages : 890
Book Description
Publisher:
ISBN:
Category : Technology
Languages : en
Pages : 890
Book Description
Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.
Publisher: AIAA
ISBN: 9781600860782
Category : Aerodynamics
Languages : en
Pages : 666
Book Description
Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.