Aerodynamic Design on Unstructured Grids for Turbulent Flows

Aerodynamic Design on Unstructured Grids for Turbulent Flows PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725072091
Category :
Languages : en
Pages : 28

Get Book Here

Book Description
An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses adjoint (costate) variables for obtaining derivatives of the cost function. The solution of the adjoint equations is obtained using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few example computations are shown. In addition, a user interface is described which significantly reduces the time required for setting up the design problems. Recommendations on directions of further research into the Navier Stokes design process are made. Anderson, W. Kyle and Bonhaus, Daryl L. Langley Research Center NASA-TM-112867, NAS 1.15:112867 RTOP 522-31-21-01...

Aerodynamic Design on Unstructured Grids for Turbulent Flows

Aerodynamic Design on Unstructured Grids for Turbulent Flows PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781725072091
Category :
Languages : en
Pages : 28

Get Book Here

Book Description
An aerodynamic design algorithm for turbulent flows using unstructured grids is described. The current approach uses adjoint (costate) variables for obtaining derivatives of the cost function. The solution of the adjoint equations is obtained using an implicit formulation in which the turbulence model is fully coupled with the flow equations when solving for the costate variables. The accuracy of the derivatives is demonstrated by comparison with finite-difference gradients and a few example computations are shown. In addition, a user interface is described which significantly reduces the time required for setting up the design problems. Recommendations on directions of further research into the Navier Stokes design process are made. Anderson, W. Kyle and Bonhaus, Daryl L. Langley Research Center NASA-TM-112867, NAS 1.15:112867 RTOP 522-31-21-01...

Aerodynamic Design on Unstructured Grids for Turbulent Flows

Aerodynamic Design on Unstructured Grids for Turbulent Flows PDF Author: W. Kyle Anderson
Publisher:
ISBN:
Category :
Languages : en
Pages : 14

Get Book Here

Book Description


Aerodynamic Design On Unstructured Grids For Turbulent Flows... NASA-TM-112867... Oct. 31. 1997

Aerodynamic Design On Unstructured Grids For Turbulent Flows... NASA-TM-112867... Oct. 31. 1997 PDF Author: United States. National Aeronautics and Space Administration
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Adaptive Solution of Viscous Aerodynamic Flows Using Unstructured Grids

Adaptive Solution of Viscous Aerodynamic Flows Using Unstructured Grids PDF Author: Paul Charles Walsh
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Aerodynamic Design Optimization on Unstructured Grids with a Continuous Adjoint Formulation

Aerodynamic Design Optimization on Unstructured Grids with a Continuous Adjoint Formulation PDF Author: W. Kyle Anderson
Publisher:
ISBN:
Category : Aerodynamics
Languages : en
Pages : 52

Get Book Here

Book Description


Unsteady Computational Fluid Dynamics in Aeronautics

Unsteady Computational Fluid Dynamics in Aeronautics PDF Author: P.G. Tucker
Publisher: Springer Science & Business Media
ISBN: 9400770499
Category : Technology & Engineering
Languages : en
Pages : 432

Get Book Here

Book Description
The field of Large Eddy Simulation (LES) and hybrids is a vibrant research area. This book runs through all the potential unsteady modelling fidelity ranges, from low-order to LES. The latter is probably the highest fidelity for practical aerospace systems modelling. Cutting edge new frontiers are defined. One example of a pressing environmental concern is noise. For the accurate prediction of this, unsteady modelling is needed. Hence computational aeroacoustics is explored. It is also emerging that there is a critical need for coupled simulations. Hence, this area is also considered and the tensions of utilizing such simulations with the already expensive LES. This work has relevance to the general field of CFD and LES and to a wide variety of non-aerospace aerodynamic systems (e.g. cars, submarines, ships, electronics, buildings). Topics treated include unsteady flow techniques; LES and hybrids; general numerical methods; computational aeroacoustics; computational aeroelasticity; coupled simulations and turbulence and its modelling (LES, RANS, transition, VLES, URANS). The volume concludes by pointing forward to future horizons and in particular the industrial use of LES. The writing style is accessible and useful to both academics and industrial practitioners. From the reviews: "Tucker's volume provides a very welcome, concise discussion of current capabilities for simulating and modellng unsteady aerodynamic flows. It covers the various pos sible numerical techniques in good, clear detail and presents a very wide range of practical applications; beautifully illustrated in many cases. This book thus provides a valuable text for practicing engineers, a rich source of background information for students and those new to this area of Research & Development, and an excellent state-of-the-art review for others. A great achievement." Mark Savill FHEA, FRAeS, C.Eng, Professor of Computational Aerodynamics Design & Head of Power & Propulsion Sciences, Department of Power & Propulsion, School of Engineering, Cranfield University, Bedfordshire, U.K. "This is a very useful book with a wide coverage of many aspects in unsteady aerodynamics method development and applications for internal and external flows." L. He, Rolls-Royce/RAEng Chair of Computational Aerothermal Engineering, Oxford University, U.K. "This comprehensive book ranges from classical concepts in both numerical methods and turbulence modelling approaches for the beginner to latest state-of-the-art for the advanced practitioner and constitutes an extremely valuable contribution to the specific Computational Fluid Dynamics literature in Aeronautics. Student and expert alike will benefit greatly by reading it from cover to cover." Sébastien Deck, Onera, Meudon, France

Computational Aerodynamics on Unstructed Meshes

Computational Aerodynamics on Unstructed Meshes PDF Author: Yun Zheng
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
New 2D and 3D unstructured-grid based flow solvers have been developed for simulating steady compressible flows for aerodynamic applications. The codes employ the full compressible Euler/Navier-Stokes equations. The Spalart-Al Imaras one equation turbulence model is used to model turbulence effects of flows. The spatial discretisation has been obtained using a cell-centred finite volume scheme on unstructured-grids, consisting of triangles in 2D and of tetrahedral and prismatic elements in 3D. The temporal discretisation has been obtained with an explicit multistage Runge-Kutta scheme. An "inflation" mesh generation technique is introduced to effectively reduce the difficulty in generating highly stretched 2D/3D viscous grids in regions near solid surfaces. The explicit flow method is accelerated by the use of a multigrid method with consideration of the high grid aspect ratio in viscous flow simulations. A solution mesh adaptation technique is incorporated to improve the overall accuracy of the 2D inviscid and viscous flow solutions. The 3D flow solvers are parallelised in a MIMD fashion aimed at a PC cluster system to reduce the computing time for aerodynamic applications. The numerical methods are first applied to several 2D inviscid flow cases, including subsonic flow in a bump channel, transonic flow around a NACA0012 airfoil and transonic flow around the RAE 2822 airfoil to validate the numerical algorithms. The rest of the 2D case studies concentrate on viscous flow simulations including laminar/turbulent flow over a flat plate, transonic turbulent flow over the RAE 2822 airfoil, and low speed turbulent flows in a turbine cascade with massive separations. The results are compared to experimental data to assess the accuracy of the method. The over resolved problem with mesh adaptation on viscous flow simulations is addressed with a two phase mesh reconstruction procedure. The solution convergence rate with the aspect ratio adaptive multigrid method and the direct connectivity based multigrid is assessed in several viscous turbulent flow simulations. Several 3D test cases are presented to validate the numerical algorithms for solving Euler/Navier-Stokes equations. Inviscid flow around the M6 wing airfoil is simulated on the tetrahedron based 3D flow solver with an upwind scheme and spatial second order finite volume method. The efficiency of the multigrid for inviscid flow simulations is examined. The efficiency of the parallelised 3D flow solver and the PC cluster system is assessed with simulations of the same case with different partitioning schemes. The present parallelised 3D flow solvers on the PC cluster system show satisfactory parallel computing performance. Turbulent flows over a flat plate are simulated with the tetrahedron based and prismatic based flow solver to validate the viscous term treatment. Next, simulation of turbulent flow over the M6 wing is carried out with the parallelised 3D flow solvers to demonstrate the overall accuracy of the algorithms and the efficiency of the multigrid method. The results show very good agreement with experimental data. A highly stretched and well-formed computational grid near the solid wall and wake regions is generated with the "inflation" method. The aspect ratio adaptive multigrid displayed a good acceleration rate. Finally, low speed flow around the NREL Phase 11 Wind turbine is simulated and the results are compared to the experimental data.

Numerical Simulation of Turbulent Flows and Noise Generation

Numerical Simulation of Turbulent Flows and Noise Generation PDF Author: Christophe Brun
Publisher: Springer Science & Business Media
ISBN: 3540899561
Category : Technology & Engineering
Languages : en
Pages : 344

Get Book Here

Book Description
Large Eddy Simulation (LES) is a high-fidelity approach to the numerical simulation of turbulent flows. Recent developments have shown LES to be able to predict aerodynamic noise generation and propagation as well as the turbulent flow, by means of either a hybrid or a direct approach. This book is based on the results of two French/German research groups working on LES simulations in complex geometries and noise generation in turbulent flows. The results provide insights into modern prediction approaches for turbulent flows and noise generation mechanisms as well as their use for novel noise reduction concepts.

Advanced Computational Fluid and Aerodynamics

Advanced Computational Fluid and Aerodynamics PDF Author: Paul G. Tucker
Publisher: Cambridge University Press
ISBN: 131666659X
Category : Technology & Engineering
Languages : en
Pages : 589

Get Book Here

Book Description
The advent of supercomputers has brought computational fluid dynamics (CFD) to the forefront as a tool to analyze increasingly complex simulation scenarios in many fields. Computational aerodynamics problems are also increasingly moving towards being coupled, multi-physics and multi-scale with complex, moving geometries. The latter presents severe geometry handling and meshing challenges. Simulations also frequently use formal design optimization processes. This book explains the evolution of CFD and provides a comprehensive overview of the plethora of tools and methods available for solving complex scenarios while exploring the future directions and possible outcomes. Using numerous examples, illustrations and computational methods the author discusses turbulence modeling, pre and post processing, coupled solutions, the importance of design optimization, multiphysics problems, reduced order models, and large scale computations and the future of CFD. Advanced Computational Fluid and Aerodynamics is suitable for audiences engaged in computational fluid dynamics including advanced undergraduates, researchers and industrial practitioners.

The Variational Method for Aerodynamic Optimization Using the Navier-Stokes Equations

The Variational Method for Aerodynamic Optimization Using the Navier-Stokes Equations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 34

Get Book Here

Book Description
This report describes the formulation of an aerodynamic shape design methodology using a compressible viscous flow model based on the Reynolds Averaged Navier Stokes equations. The aerodynamic shape is described by a set of geometrical design variables. The design problem is formulated as an optimization problem stated in terms of an aerodynamic objective functional which has to be minimized. The design scheme employs a gradient based optimization algorithm in order to obtain the optimum values of the design variables. The gradient of the aerodynamic functional with respect to the design variables is computed by means of the variational method, which requires the solution of an adjoint problem. The formulation of the adjoint problem is described which leads to a set of adjoint equations and boundary conditions. Using the flow variables and the adjoint variables, an expression for the gradient has been constructed. Computational results are presented for an inverse problem of an airfoil. It will be shown that, starting from an initial geometry of the NACA 0012 airfoil, the target pressure distribution and geometry of a best fit of the RAE 2822 airfoil in a transonic flow condition has been reconstructed successfully.