Recent Advances in Time Series Forecasting

Recent Advances in Time Series Forecasting PDF Author: Dinesh C.S. Bisht
Publisher: CRC Press
ISBN: 1000433846
Category : Mathematics
Languages : en
Pages : 183

Get Book Here

Book Description
Future predictions are always a topic of interest. Precise estimates are crucial in many activities as forecasting errors can lead to big financial loss. The sequential analysis of data and information gathered from past to present is call time series analysis. This book covers the recent advancements in time series forecasting. The book includes theoretical as well as recent applications of time series analysis. It focuses on the recent techniques used, discusses a combination of methodology and applications, presents traditional and advanced tools, new applications, and identifies the gaps in knowledge in engineering applications. This book is aimed at scientists, researchers, postgraduate students and engineers in the areas of supply chain management, production, inventory planning, and statistical quality control.

Advanced Time Series Data Analysis

Advanced Time Series Data Analysis PDF Author: I. Gusti Ngurah Agung
Publisher: John Wiley & Sons
ISBN: 1119504716
Category : Mathematics
Languages : en
Pages : 538

Get Book Here

Book Description
Introduces the latest developments in forecasting in advanced quantitative data analysis This book presents advanced univariate multiple regressions, which can directly be used to forecast their dependent variables, evaluate their in-sample forecast values, and compute forecast values beyond the sample period. Various alternative multiple regressions models are presented based on a single time series, bivariate, and triple time-series, which are developed by taking into account specific growth patterns of each dependent variables, starting with the simplest model up to the most advanced model. Graphs of the observed scores and the forecast evaluation of each of the models are offered to show the worst and the best forecast models among each set of the models of a specific independent variable. Advanced Time Series Data Analysis: Forecasting Using EViews provides readers with a number of modern, advanced forecast models not featured in any other book. They include various interaction models, models with alternative trends (including the models with heterogeneous trends), and complete heterogeneous models for monthly time series, quarterly time series, and annually time series. Each of the models can be applied by all quantitative researchers. Presents models that are all classroom tested Contains real-life data samples Contains over 350 equation specifications of various time series models Contains over 200 illustrative examples with special notes and comments Applicable for time series data of all quantitative studies Advanced Time Series Data Analysis: Forecasting Using EViews will appeal to researchers and practitioners in forecasting models, as well as those studying quantitative data analysis. It is suitable for those wishing to obtain a better knowledge and understanding on forecasting, specifically the uncertainty of forecast values.

Forecasting: principles and practice

Forecasting: principles and practice PDF Author: Rob J Hyndman
Publisher: OTexts
ISBN: 0987507117
Category : Business & Economics
Languages : en
Pages : 380

Get Book Here

Book Description
Forecasting is required in many situations. Stocking an inventory may require forecasts of demand months in advance. Telecommunication routing requires traffic forecasts a few minutes ahead. Whatever the circumstances or time horizons involved, forecasting is an important aid in effective and efficient planning. This textbook provides a comprehensive introduction to forecasting methods and presents enough information about each method for readers to use them sensibly.

Computational Intelligence in Time Series Forecasting

Computational Intelligence in Time Series Forecasting PDF Author: Ajoy K. Palit
Publisher: Springer Science & Business Media
ISBN: 1846281849
Category : Computers
Languages : en
Pages : 382

Get Book Here

Book Description
Foresight in an engineering business can make the difference between success and failure, and can be vital to the effective control of industrial systems. The authors of this book harness the power of intelligent technologies individually and in combination.

Advances in Time Series Forecasting

Advances in Time Series Forecasting PDF Author: Cagdas Hakan Aladag
Publisher: Bentham Science Publishers
ISBN: 1608053733
Category : Mathematics
Languages : en
Pages : 143

Get Book Here

Book Description
"Time series analysis is applicable in a variety of disciplines such as business administration, economics, public finances, engineering, statistics, econometrics, mathematics and actuarial sciences. Forecasting the future assists in critical organizationa"

Introduction to Time Series and Forecasting

Introduction to Time Series and Forecasting PDF Author: Peter J. Brockwell
Publisher: Springer Science & Business Media
ISBN: 1475725264
Category : Mathematics
Languages : en
Pages : 429

Get Book Here

Book Description
Some of the key mathematical results are stated without proof in order to make the underlying theory acccessible to a wider audience. The book assumes a knowledge only of basic calculus, matrix algebra, and elementary statistics. The emphasis is on methods and the analysis of data sets. The logic and tools of model-building for stationary and non-stationary time series are developed in detail and numerous exercises, many of which make use of the included computer package, provide the reader with ample opportunity to develop skills in this area. The core of the book covers stationary processes, ARMA and ARIMA processes, multivariate time series and state-space models, with an optional chapter on spectral analysis. Additional topics include harmonic regression, the Burg and Hannan-Rissanen algorithms, unit roots, regression with ARMA errors, structural models, the EM algorithm, generalized state-space models with applications to time series of count data, exponential smoothing, the Holt-Winters and ARAR forecasting algorithms, transfer function models and intervention analysis. Brief introducitons are also given to cointegration and to non-linear, continuous-time and long-memory models. The time series package included in the back of the book is a slightly modified version of the package ITSM, published separately as ITSM for Windows, by Springer-Verlag, 1994. It does not handle such large data sets as ITSM for Windows, but like the latter, runs on IBM-PC compatible computers under either DOS or Windows (version 3.1 or later). The programs are all menu-driven so that the reader can immediately apply the techniques in the book to time series data, with a minimal investment of time in the computational and algorithmic aspects of the analysis.

Advances in Streamflow Forecasting

Advances in Streamflow Forecasting PDF Author: Priyanka Sharma
Publisher: Elsevier
ISBN: 0128209240
Category : Science
Languages : en
Pages : 406

Get Book Here

Book Description
Advances in Streamflow Forecasting: From Traditional to Modern Approaches covers the three major data-driven approaches of streamflow forecasting including traditional approach of statistical and stochastic time-series modelling with their recent developments, stand-alone data-driven approach such as artificial intelligence techniques, and modern hybridized approach where data-driven models are combined with preprocessing methods to improve the forecast accuracy of streamflows and to reduce the forecast uncertainties. This book starts by providing the background information, overview, and advances made in streamflow forecasting. The overview portrays the progress made in the field of streamflow forecasting over the decades. Thereafter, chapters describe theoretical methodology of the different data-driven tools and techniques used for streamflow forecasting along with case studies from different parts of the world. Each chapter provides a flowchart explaining step-by-step methodology followed in applying the data-driven approach in streamflow forecasting. This book addresses challenges in forecasting streamflows by abridging the gaps between theory and practice through amalgamation of theoretical descriptions of the data-driven techniques and systematic demonstration of procedures used in applying the techniques. Language of this book is kept simple to make the readers understand easily about different techniques and make them capable enough to straightforward replicate the approach in other areas of their interest. This book will be vital for hydrologists when optimizing the water resources system, and to mitigate the impact of destructive natural disasters such as floods and droughts by implementing long-term planning (structural and nonstructural measures), and short-term emergency warning. Moreover, this book will guide the readers in choosing an appropriate technique for streamflow forecasting depending upon the given set of conditions. - Contributions from renowned researchers/experts of the subject from all over the world to provide the most authoritative outlook on streamflow forecasting - Provides an excellent overview and advances made in streamflow forecasting over the past more than five decades and covers both traditional and modern data-driven approaches in streamflow forecasting - Includes case studies along with detailed flowcharts demonstrating a systematic application of different data-driven models in streamflow forecasting, which helps understand the step-by-step procedures

Machine Learning for Time Series Forecasting with Python

Machine Learning for Time Series Forecasting with Python PDF Author: Francesca Lazzeri
Publisher: John Wiley & Sons
ISBN: 111968238X
Category : Computers
Languages : en
Pages : 224

Get Book Here

Book Description
Learn how to apply the principles of machine learning to time series modeling with this indispensable resource Machine Learning for Time Series Forecasting with Python is an incisive and straightforward examination of one of the most crucial elements of decision-making in finance, marketing, education, and healthcare: time series modeling. Despite the centrality of time series forecasting, few business analysts are familiar with the power or utility of applying machine learning to time series modeling. Author Francesca Lazzeri, a distinguished machine learning scientist and economist, corrects that deficiency by providing readers with comprehensive and approachable explanation and treatment of the application of machine learning to time series forecasting. Written for readers who have little to no experience in time series forecasting or machine learning, the book comprehensively covers all the topics necessary to: Understand time series forecasting concepts, such as stationarity, horizon, trend, and seasonality Prepare time series data for modeling Evaluate time series forecasting models’ performance and accuracy Understand when to use neural networks instead of traditional time series models in time series forecasting Machine Learning for Time Series Forecasting with Python is full real-world examples, resources and concrete strategies to help readers explore and transform data and develop usable, practical time series forecasts. Perfect for entry-level data scientists, business analysts, developers, and researchers, this book is an invaluable and indispensable guide to the fundamental and advanced concepts of machine learning applied to time series modeling.

Theory and Applications of Time Series Analysis

Theory and Applications of Time Series Analysis PDF Author: Olga Valenzuela
Publisher: Springer Nature
ISBN: 3030562190
Category : Business & Economics
Languages : en
Pages : 452

Get Book Here

Book Description
This book presents a selection of peer-reviewed contributions on the latest advances in time series analysis, presented at the International Conference on Time Series and Forecasting (ITISE 2019), held in Granada, Spain, on September 25-27, 2019. The first two parts of the book present theoretical contributions on statistical and advanced mathematical methods, and on econometric models, financial forecasting and risk analysis. The remaining four parts include practical contributions on time series analysis in energy; complex/big data time series and forecasting; time series analysis with computational intelligence; and time series analysis and prediction for other real-world problems. Given this mix of topics, readers will acquire a more comprehensive perspective on the field of time series analysis and forecasting. The ITISE conference series provides a forum for scientists, engineers, educators and students to discuss the latest advances and implementations in the foundations, theory, models and applications of time series analysis and forecasting. It focuses on interdisciplinary research encompassing computer science, mathematics, statistics and econometrics.

SAS for Forecasting Time Series, Third Edition

SAS for Forecasting Time Series, Third Edition PDF Author: John C. Brocklebank, Ph.D.
Publisher: SAS Institute
ISBN: 1629605441
Category : Computers
Languages : en
Pages : 616

Get Book Here

Book Description
To use statistical methods and SAS applications to forecast the future values of data taken over time, you need only follow this thoroughly updated classic on the subject. With this third edition of SAS for Forecasting Time Series, intermediate-to-advanced SAS users—such as statisticians, economists, and data scientists—can now match the most sophisticated forecasting methods to the most current SAS applications. Starting with fundamentals, this new edition presents methods for modeling both univariate and multivariate data taken over time. From the well-known ARIMA models to unobserved components, methods that span the range from simple to complex are discussed and illustrated. Many of the newer methods are variations on the basic ARIMA structures. Completely updated, this new edition includes fresh, interesting business situations and data sets, and new sections on these up-to-date statistical methods: ARIMA models Vector autoregressive models Exponential smoothing models Unobserved component and state-space models Seasonal adjustment Spectral analysis Focusing on application, this guide teaches a wide range of forecasting techniques by example. The examples provide the statistical underpinnings necessary to put the methods into practice. The following up-to-date SAS applications are covered in this edition: The ARIMA procedure The AUTOREG procedure The VARMAX procedure The ESM procedure The UCM and SSM procedures The X13 procedure The SPECTRA procedure SAS Forecast Studio Each SAS application is presented with explanation of its strengths, weaknesses, and best uses. Even users of automated forecasting systems will benefit from this knowledge of what is done and why. Moreover, the accompanying examples can serve as templates that you easily adjust to fit your specific forecasting needs. This book is part of the SAS Press program.