Advances in Plastid Biology and Its Applications

Advances in Plastid Biology and Its Applications PDF Author: Niaz Ahmad
Publisher: Frontiers Media SA
ISBN: 2889450481
Category : Botany
Languages : en
Pages : 161

Get Book Here

Book Description
One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions like sulphur metabolism, The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.

Advances in Plastid Biology and Its Applications

Advances in Plastid Biology and Its Applications PDF Author: Niaz Ahmad
Publisher: Frontiers Media SA
ISBN: 2889450481
Category : Botany
Languages : en
Pages : 161

Get Book Here

Book Description
One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions like sulphur metabolism, The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.

Photosynthesis

Photosynthesis PDF Author: Julian J. Eaton-Rye
Publisher: Springer Science & Business Media
ISBN: 940071579X
Category : Science
Languages : en
Pages : 874

Get Book Here

Book Description
“Photosynthesis: Plastid Biology, Energy Conversion and Carbon Assimilation” was conceived as a comprehensive treatment touching on most of the processes important for photosynthesis. Most of the chapters provide a broad coverage that, it is hoped, will be accessible to advanced undergraduates, graduate students, and researchers looking to broaden their knowledge of photosynthesis. For biologists, biochemists, and biophysicists, this volume will provide quick background understanding for the breadth of issues in photosynthesis that are important in research and instructional settings. This volume will be of interest to advanced undergraduates in plant biology, and plant biochemistry and to graduate students and instructors wanting a single reference volume on the latest understanding of the critical components of photosynthesis.

Plastid Biology

Plastid Biology PDF Author: Steven M. Theg
Publisher: Springer
ISBN: 1493911368
Category : Science
Languages : en
Pages : 585

Get Book Here

Book Description
Plastids are the sites of conversion of solar energy into the chemical energy usable to sustain life. They are also responsible for the production of the vast majority of the oxygen in the atmosphere. Through these activities they play a unique role in the biosphere, producing two critical products upon which life on Earth depends. It covers in 21 chapters nearly all actively investigated areas of plastid biology, from biosynthesis to function to their uses in biotechnology. The editors have compiled an extensive list of international experts from whom to solicit chapters. As is evident from the suggested Table of Contents, the book will start with a discussion of genetic material and its expression, followed by differentiation and development of different plastid types and internal organization. This is followed by an in depth look at biogenesis and assembly of plastid proteins and protein complexes and then by the important metabolic functions in plastids. The book will end with two chapters discussing the role of plastid biology in protein expression biotechnology and in hydrogen and biofuel production.

Molecular Biology of the Cell

Molecular Biology of the Cell PDF Author:
Publisher:
ISBN: 9780815332183
Category : Cells
Languages : en
Pages : 0

Get Book Here

Book Description


Advances in Plastid Biology and Its Applications

Advances in Plastid Biology and Its Applications PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.One of the distinguishing features of plants is the presence of membrane-bound organelles called plastids. Starting from proplastids (undifferentiated plastids) they readily develop into specialised types, which are involved in a range of cellular functions such as photosynthesis, nitrogen assimilation, biosynthesis of sucrose, starch, chlorophyll, carotenoids, fatty acids, amino acids, and secondary metabolites as well as a number of metabolic reactions. The central role of plastids in many aspects of plant cell biology means an in-depth understanding is key for a holistic view of plant physiology. Despite the vast amount of research, the molecular details of many aspects of plastid biology remains limited. Plastids possess their own high-copy number genome known as the plastome. Manipulation of the plastid genome has been developed as an alternative way to developing transgenic plants for various biotechnological applications. High-copy number of the plastome, site-specific integration of transgenes through homologous recombination, and potential to express proteins at high levels (>70% of total soluble proteins has been reported in some cases) are some of the technologies being developed. Additionally, plastids are inherited maternally, providing a natural gene containment system, and do not follow Mendelian laws of inheritance, allowing each individual member of the progeny of a transplastomic line to uniformly express transgene(s). Both algal and higher plant chloroplast transformation has been demonstrated, and with the ability to be propagated either in bioreactors or in the field, both systems are well suited for scale up of production. The manipulation of chloroplast genes is also essential for many approaches that attempt to increase biomass accumulation or re-routing metabolic pathways for biofortification, food and fuel production. This includes metabolic engineering for lipid production, adapting the light harvesting apparatus to improve solar conversion efficiencies and engineering means of suppressing photorespiration in crop species, which range from the introduction of artificial carbon concentrating mechanisms, or those pre-existing elsewhere in nature, to bypassing ribulose bisphosphate carboxylase/oxygenase entirely. The purpose of this eBook is to provide a compilation of the latest research on various aspects of plastid biology including basic biology, biopharming, metabolic engineering, bio-fortification, stress physiology, and biofuel production.

Chloroplast Biotechnology

Chloroplast Biotechnology PDF Author: Pal Maliga
Publisher: Humana
ISBN: 9781627039949
Category : Science
Languages : en
Pages : 0

Get Book Here

Book Description
In Chloroplast Biotechnology: Methods and Protocols, expert researchers in the field detail many of the methods which are now commonly used in chloroplast molecular biology. Chapters focus on essential background information, applications in tobacco and protocols for plastid transformation in crops and Chlamydomonas and Bryophytes. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols and key tips on troubleshooting and avoidance of known pitfalls. Authoritative and practical, Chloroplast Biotechnology: Methods and Protocols seek to aid scientists who study chloroplast molecular biology as well as those interested in applications in agriculture, industrial biotechnology and healthcare.

Organelles—Advances in Research and Application: 2012 Edition

Organelles—Advances in Research and Application: 2012 Edition PDF Author:
Publisher: ScholarlyEditions
ISBN: 146499174X
Category : Science
Languages : en
Pages : 728

Get Book Here

Book Description
Organelles—Advances in Research and Application: 2012 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Organelles. The editors have built Organelles—Advances in Research and Application: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Organelles in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Organelles—Advances in Research and Application: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.

Transgenic Microalgae as Green Cell Factories

Transgenic Microalgae as Green Cell Factories PDF Author: Rosa León
Publisher: Springer Science & Business Media
ISBN: 0387755322
Category : Science
Languages : en
Pages : 145

Get Book Here

Book Description
Microalgae have been largely commercialized as food and feed additives, and their potential as a source of high-added value compounds is well known. Yet, only a few species of microalgae have been genetically transformed with efficiency. A better understanding of the mechanisms that control the regulation of gene expression in eukaryotes is therefore needed. In this book a group of outstanding researchers working on different areas of microalgae biotechnology offer a global vision of the genetic manipulation of microalgae and their applications.

The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas

The Molecular Biology of Chloroplasts and Mitochondria in Chlamydomonas PDF Author: J.-D. Rochaix
Publisher: Springer Science & Business Media
ISBN: 0792351746
Category : Science
Languages : en
Pages : 736

Get Book Here

Book Description
Provides a thorough overview of current research with the green alga Chlamydomonas on chloroplast and mitochondrial biogenesis and function, with an emphasis on the assembly and structure-function relationships of the constituents of the photosynthetic apparatus. Contributions emphasize the multidisciplinary nature of current research in photosynthesis, combining molecular genetics, biochemical, biophysical, and physiological approaches. The 36 articles address topics including nuclear genome organization; RNA stability and processing; splicing; translation; protein targeting in the chloroplast; photosystems; pigments; glycerolipids; the ATP synthase; and ferrodoxin and thioredoxin. Further contributions address new measurements methods for photosynthetic activity in vivo; starch biosynthesis; the responses of Chlamydomonas to various stress conditions; nitrogen assimilation; and mitochondrial genetics. Annotation copyrighted by Book News, Inc., Portland, OR

Current Developments in Biotechnology and Bioengineering

Current Developments in Biotechnology and Bioengineering PDF Author: Sudhir P. Singh
Publisher: Elsevier
ISBN: 044464086X
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
Current Developments in Biotechnology and Bioengineering: Synthetic Biology, Cell Engineering and Bioprocessing Technologies covers the current perspectives and outlook of synthetic biology in the agriculture, food and health sectors. This book begins with the basics about synthetic biology and cell engineering, and then explores this in more detail, focusing on topics like applications of synthetic biology, industrial bioprocesses, and future perspectives. Information on cell engineering is also presented, and manipulation in endogenous metabolic network is studied alongside advanced topics such as fine tuning of metabolic pathways, de novo biosynthetic pathway design, enzyme engineering targeted to improved kinetics and stability, and potential applications of the novel biological systems in bioprocess technology to achieve the production of value-added compounds with specific biological activities. - Assists in developing a conceptual understanding of synthetic biology and cellular and metabolic engineering. - Includes comprehensive information on new developments and advancements. - Lists applications of synthetic biology in agriculture, food, and health