Author: Sever Silvestru Dragomir
Publisher: Nova Publishers
ISBN: 9781594549038
Category : Mathematics
Languages : en
Pages : 260
Book Description
Inequalities for hermitian forms -- Schwarz related inequalities -- Reverses for the triangle inequality -- Reverses for the continous triangle inequality -- Reverses of the cbs and heisenberg inequalities -- Other inequalities in inner product spaces
Advances in Inequalities of the Schwarz, Triangle and Heisenberg Type in Inner Product Spaces
Author: Sever Silvestru Dragomir
Publisher: Nova Publishers
ISBN: 9781594549038
Category : Mathematics
Languages : en
Pages : 260
Book Description
Inequalities for hermitian forms -- Schwarz related inequalities -- Reverses for the triangle inequality -- Reverses for the continous triangle inequality -- Reverses of the cbs and heisenberg inequalities -- Other inequalities in inner product spaces
Publisher: Nova Publishers
ISBN: 9781594549038
Category : Mathematics
Languages : en
Pages : 260
Book Description
Inequalities for hermitian forms -- Schwarz related inequalities -- Reverses for the triangle inequality -- Reverses for the continous triangle inequality -- Reverses of the cbs and heisenberg inequalities -- Other inequalities in inner product spaces
Progress in Approximation Theory and Applicable Complex Analysis
Author: Narendra Kumar Govil
Publisher: Springer
ISBN: 331949242X
Category : Mathematics
Languages : en
Pages : 541
Book Description
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934–2013) of the Université de Montréal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
Publisher: Springer
ISBN: 331949242X
Category : Mathematics
Languages : en
Pages : 541
Book Description
Current and historical research methods in approximation theory are presented in this book beginning with the 1800s and following the evolution of approximation theory via the refinement and extension of classical methods and ending with recent techniques and methodologies. Graduate students, postdocs, and researchers in mathematics, specifically those working in the theory of functions, approximation theory, geometric function theory, and optimization will find new insights as well as a guide to advanced topics. The chapters in this book are grouped into four themes; the first, polynomials (Chapters 1 –8), includes inequalities for polynomials and rational functions, orthogonal polynomials, and location of zeros. The second, inequalities and extremal problems are discussed in Chapters 9 –13. The third, approximation of functions, involves the approximants being polynomials, rational functions, and other types of functions and are covered in Chapters 14 –19. The last theme, quadrature, cubature and applications, comprises the final three chapters and includes an article coauthored by Rahman. This volume serves as a memorial volume to commemorate the distinguished career of Qazi Ibadur Rahman (1934–2013) of the Université de Montréal. Rahman was considered by his peers as one of the prominent experts in analytic theory of polynomials and entire functions. The novelty of his work lies in his profound abilities and skills in applying techniques from other areas of mathematics, such as optimization theory and variational principles, to obtain final answers to countless open problems.
Advanced Inequalities
Author: George A. Anastassiou
Publisher: World Scientific
ISBN: 9814317624
Category : Mathematics
Languages : en
Pages : 423
Book Description
This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and HardyOpial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and applications as well as ChebyshevGruss, Gruss and Comparison of Means inequalities are studied. The results presented are mostly optimal, that is the inequalities are sharp and attained. Applications in many areas of pure and applied mathematics, such as mathematical analysis, probability, ordinary and partial differential equations, numerical analysis, information theory, etc., are explored in detail, as such this monograph is suitable for researchers and graduate students. It will be a useful teaching material at seminars as well as an invaluable reference source in all science libraries.
Publisher: World Scientific
ISBN: 9814317624
Category : Mathematics
Languages : en
Pages : 423
Book Description
This monograph presents univariate and multivariate classical analyses of advanced inequalities. This treatise is a culmination of the author's last thirteen years of research work. The chapters are self-contained and several advanced courses can be taught out of this book. Extensive background and motivations are given in each chapter with a comprehensive list of references given at the end. The topics covered are wide-ranging and diverse. Recent advances on Ostrowski type inequalities, Opial type inequalities, Poincare and Sobolev type inequalities, and HardyOpial type inequalities are examined. Works on ordinary and distributional Taylor formulae with estimates for their remainders and applications as well as ChebyshevGruss, Gruss and Comparison of Means inequalities are studied. The results presented are mostly optimal, that is the inequalities are sharp and attained. Applications in many areas of pure and applied mathematics, such as mathematical analysis, probability, ordinary and partial differential equations, numerical analysis, information theory, etc., are explored in detail, as such this monograph is suitable for researchers and graduate students. It will be a useful teaching material at seminars as well as an invaluable reference source in all science libraries.
Probabilistic Inequalities
Author: George A Anastassiou
Publisher: World Scientific
ISBN: 9814467138
Category : Mathematics
Languages : en
Pages : 429
Book Description
In this monograph, the author presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. These are built on the recent classical form of real analysis inequalities which are also discussed in full details. This treatise is the culmination and crystallization of the author's last two decades of research work in related discipline. Each of the chapters is self-contained and a few advanced courses can be taught out of this book. Extensive background and motivations for specific topics are given in each chapter. A very extensive list of references is also provided at the end.The topics covered in this unique book are wide-ranging and diverse. The opening chapters examine the probabilistic Ostrowski type inequalities, and various related ones, as well as the largely discusses about the Grothendieck type probabilistic inequalities. The book is also about inequalities in information theory and the Csiszar's f-Divergence between probability measures. A great section of the book is also devoted to the applications in various directions of Geometry Moment Theory. Also, the development of the Grüss type and Chebyshev-Grüss type inequalities for Stieltjes integrals and the applications in probability are explored in detail. The final chapters discuss the important real analysis methods with potential applications to stochastics. The book will be of interest to researchers and graduate students, and it is also seen as an invaluable reference book to be acquired by all science libraries as well as seminars that conduct discussions on related topics.
Publisher: World Scientific
ISBN: 9814467138
Category : Mathematics
Languages : en
Pages : 429
Book Description
In this monograph, the author presents univariate and multivariate probabilistic inequalities with coverage on basic probabilistic entities like expectation, variance, moment generating function and covariance. These are built on the recent classical form of real analysis inequalities which are also discussed in full details. This treatise is the culmination and crystallization of the author's last two decades of research work in related discipline. Each of the chapters is self-contained and a few advanced courses can be taught out of this book. Extensive background and motivations for specific topics are given in each chapter. A very extensive list of references is also provided at the end.The topics covered in this unique book are wide-ranging and diverse. The opening chapters examine the probabilistic Ostrowski type inequalities, and various related ones, as well as the largely discusses about the Grothendieck type probabilistic inequalities. The book is also about inequalities in information theory and the Csiszar's f-Divergence between probability measures. A great section of the book is also devoted to the applications in various directions of Geometry Moment Theory. Also, the development of the Grüss type and Chebyshev-Grüss type inequalities for Stieltjes integrals and the applications in probability are explored in detail. The final chapters discuss the important real analysis methods with potential applications to stochastics. The book will be of interest to researchers and graduate students, and it is also seen as an invaluable reference book to be acquired by all science libraries as well as seminars that conduct discussions on related topics.
Advances in Matrix Inequalities
Author: Mohammad Bagher Ghaemi
Publisher: Springer Nature
ISBN: 3030760472
Category : Mathematics
Languages : en
Pages : 287
Book Description
This self-contained monograph unifies theorems, applications and problem solving techniques of matrix inequalities. In addition to the frequent use of methods from Functional Analysis, Operator Theory, Global Analysis, Linear Algebra, Approximations Theory, Difference and Functional Equations and more, the reader will also appreciate techniques of classical analysis and algebraic arguments, as well as combinatorial methods. Subjects such as operator Young inequalities, operator inequalities for positive linear maps, operator inequalities involving operator monotone functions, norm inequalities, inequalities for sector matrices are investigated thoroughly throughout this book which provides an account of a broad collection of classic and recent developments. Detailed proofs for all the main theorems and relevant technical lemmas are presented, therefore interested graduate and advanced undergraduate students will find the book particularly accessible. In addition to several areas of theoretical mathematics, Matrix Analysis is applicable to a broad spectrum of disciplines including operations research, mathematical physics, statistics, economics, and engineering disciplines. It is hoped that graduate students as well as researchers in mathematics, engineering, physics, economics and other interdisciplinary areas will find the combination of current and classical results and operator inequalities presented within this monograph particularly useful.
Publisher: Springer Nature
ISBN: 3030760472
Category : Mathematics
Languages : en
Pages : 287
Book Description
This self-contained monograph unifies theorems, applications and problem solving techniques of matrix inequalities. In addition to the frequent use of methods from Functional Analysis, Operator Theory, Global Analysis, Linear Algebra, Approximations Theory, Difference and Functional Equations and more, the reader will also appreciate techniques of classical analysis and algebraic arguments, as well as combinatorial methods. Subjects such as operator Young inequalities, operator inequalities for positive linear maps, operator inequalities involving operator monotone functions, norm inequalities, inequalities for sector matrices are investigated thoroughly throughout this book which provides an account of a broad collection of classic and recent developments. Detailed proofs for all the main theorems and relevant technical lemmas are presented, therefore interested graduate and advanced undergraduate students will find the book particularly accessible. In addition to several areas of theoretical mathematics, Matrix Analysis is applicable to a broad spectrum of disciplines including operations research, mathematical physics, statistics, economics, and engineering disciplines. It is hoped that graduate students as well as researchers in mathematics, engineering, physics, economics and other interdisciplinary areas will find the combination of current and classical results and operator inequalities presented within this monograph particularly useful.
Analytic Number Theory, Approximation Theory, and Special Functions
Author: Gradimir V. Milovanović
Publisher: Springer
ISBN: 149390258X
Category : Mathematics
Languages : en
Pages : 873
Book Description
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.
Publisher: Springer
ISBN: 149390258X
Category : Mathematics
Languages : en
Pages : 873
Book Description
This book, in honor of Hari M. Srivastava, discusses essential developments in mathematical research in a variety of problems. It contains thirty-five articles, written by eminent scientists from the international mathematical community, including both research and survey works. Subjects covered include analytic number theory, combinatorics, special sequences of numbers and polynomials, analytic inequalities and applications, approximation of functions and quadratures, orthogonality and special and complex functions. The mathematical results and open problems discussed in this book are presented in a simple and self-contained manner. The book contains an overview of old and new results, methods, and theories toward the solution of longstanding problems in a wide scientific field, as well as new results in rapidly progressing areas of research. The book will be useful for researchers and graduate students in the fields of mathematics, physics and other computational and applied sciences.
American Book Publishing Record
Author:
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 1132
Book Description
Publisher:
ISBN:
Category : American literature
Languages : en
Pages : 1132
Book Description
The Cauchy-Schwarz Master Class
Author: J. Michael Steele
Publisher: Cambridge University Press
ISBN: 9780521546775
Category : Mathematics
Languages : en
Pages : 320
Book Description
This lively, problem-oriented text, first published in 2004, is designed to coach readers toward mastery of the most fundamental mathematical inequalities. With the Cauchy-Schwarz inequality as the initial guide, the reader is led through a sequence of fascinating problems whose solutions are presented as they might have been discovered - either by one of history's famous mathematicians or by the reader. The problems emphasize beauty and surprise, but along the way readers will find systematic coverage of the geometry of squares, convexity, the ladder of power means, majorization, Schur convexity, exponential sums, and the inequalities of Hölder, Hilbert, and Hardy. The text is accessible to anyone who knows calculus and who cares about solving problems. It is well suited to self-study, directed study, or as a supplement to courses in analysis, probability, and combinatorics.
Publisher: Cambridge University Press
ISBN: 9780521546775
Category : Mathematics
Languages : en
Pages : 320
Book Description
This lively, problem-oriented text, first published in 2004, is designed to coach readers toward mastery of the most fundamental mathematical inequalities. With the Cauchy-Schwarz inequality as the initial guide, the reader is led through a sequence of fascinating problems whose solutions are presented as they might have been discovered - either by one of history's famous mathematicians or by the reader. The problems emphasize beauty and surprise, but along the way readers will find systematic coverage of the geometry of squares, convexity, the ladder of power means, majorization, Schur convexity, exponential sums, and the inequalities of Hölder, Hilbert, and Hardy. The text is accessible to anyone who knows calculus and who cares about solving problems. It is well suited to self-study, directed study, or as a supplement to courses in analysis, probability, and combinatorics.
Introductory Functional Analysis with Applications
Author: Erwin Kreyszig
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Publisher: John Wiley & Sons
ISBN: 0471504599
Category : Mathematics
Languages : en
Pages : 706
Book Description
KREYSZIG The Wiley Classics Library consists of selected books originally published by John Wiley & Sons that have become recognized classics in their respective fields. With these new unabridged and inexpensive editions, Wiley hopes to extend the life of these important works by making them available to future generations of mathematicians and scientists. Currently available in the Series: Emil Artin Geometnc Algebra R. W. Carter Simple Groups Of Lie Type Richard Courant Differential and Integrai Calculus. Volume I Richard Courant Differential and Integral Calculus. Volume II Richard Courant & D. Hilbert Methods of Mathematical Physics, Volume I Richard Courant & D. Hilbert Methods of Mathematical Physics. Volume II Harold M. S. Coxeter Introduction to Modern Geometry. Second Edition Charles W. Curtis, Irving Reiner Representation Theory of Finite Groups and Associative Algebras Nelson Dunford, Jacob T. Schwartz unear Operators. Part One. General Theory Nelson Dunford. Jacob T. Schwartz Linear Operators, Part Two. Spectral Theory—Self Adjant Operators in Hilbert Space Nelson Dunford, Jacob T. Schwartz Linear Operators. Part Three. Spectral Operators Peter Henrici Applied and Computational Complex Analysis. Volume I—Power Senes-lntegrauon-Contormal Mapping-Locatvon of Zeros Peter Hilton, Yet-Chiang Wu A Course in Modern Algebra Harry Hochstadt Integral Equations Erwin Kreyszig Introductory Functional Analysis with Applications P. M. Prenter Splines and Variational Methods C. L. Siegel Topics in Complex Function Theory. Volume I —Elliptic Functions and Uniformizatton Theory C. L. Siegel Topics in Complex Function Theory. Volume II —Automorphic and Abelian Integrals C. L. Siegel Topics In Complex Function Theory. Volume III —Abelian Functions & Modular Functions of Several Variables J. J. Stoker Differential Geometry
Mathematical Methods in Quantum Mechanics
Author: Gerald Teschl
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).
Publisher: American Mathematical Soc.
ISBN: 0821846604
Category : Mathematics
Languages : en
Pages : 322
Book Description
Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).