Author: Reinhold Blumel
Publisher: Jones & Bartlett Publishers
ISBN: 1449655904
Category : Medical
Languages : en
Pages : 437
Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.
Advanced Quantum Mechanics
Author: Reinhold Blumel
Publisher: Jones & Bartlett Publishers
ISBN: 1449655904
Category : Medical
Languages : en
Pages : 437
Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.
Publisher: Jones & Bartlett Publishers
ISBN: 1449655904
Category : Medical
Languages : en
Pages : 437
Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.
Advanced Quantum Mechanics
Author: Reinhold Blümel
Publisher: Jones & Bartlett Learning
ISBN: 1934015520
Category : Science
Languages : en
Pages : 438
Book Description
Physics
Publisher: Jones & Bartlett Learning
ISBN: 1934015520
Category : Science
Languages : en
Pages : 438
Book Description
Physics
Advanced Quantum Mechanics
Author: RAINER DICK
Publisher: Springer
ISBN: 3319256750
Category : Science
Languages : en
Pages : 694
Book Description
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.
Publisher: Springer
ISBN: 3319256750
Category : Science
Languages : en
Pages : 694
Book Description
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of quantum electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquired an understanding of basic quantum mechanics and classical field theory, canonical field quantization is easy. Furthermore, the integrated discussion of transition amplitudes naturally leads to the notions of transition probabilities, decay rates, absorption cross sections and scattering cross sections, which are important for all experimental techniques that use photon probes.
Advanced Quantum Mechanics: The Classical-Quantum Connection
Author: Reinhold Blumel
Publisher: Jones & Bartlett Publishers
ISBN: 1449666922
Category : Science
Languages : en
Pages : 437
Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.
Publisher: Jones & Bartlett Publishers
ISBN: 1449666922
Category : Science
Languages : en
Pages : 437
Book Description
This book provides a coherent introduction to Gutzwiller’s trace formula accessible to well-prepared science, mathematics, and engineering students who have taken introductory courses in linear algebra, classical, and quantum mechanics. In addition to providing an enrichment of the undergraduate curriculum, this book may serve as the primary text for graduate courses on semiclassical methods. Since periodic-orbit expansions may be used to solve all types of wave systems that typically occur in mathematics, phyics, and engineering, this book is attractice for professional scientists and engineers as well. Following a thorough review of elementary concepts in classical and quantum mechanics the reader is introduced to the idea of classical periodic orbits, the foundation of Gutzwiller’s approach to quantum spectra. The trace formula itself is derived following an introduction to Feynman’s path integrals. Numerous applications, including the exact solutions of “unsolvable” one-dimensional quantum problems, illustrate the power of Gutzwiller’s method. Worked examples throughout the text illustrate the material and provide immediate “hands-on” demonstrations of tools and concepts just learned. Problems at the end of each section invite the reader to consolidate the acquired knowledge.
Advanced Molecular Quantum Mechanics
Author: R. Moss
Publisher: Springer Science & Business Media
ISBN: 9400956886
Category : Science
Languages : en
Pages : 251
Book Description
This book is primarily intended for graduate chemists and chemical physicists. Indeed, it is based on a graduate course that I give in the Chemistry Depart ment of Southampton University. Nowadays undergraduate chemistry courses usually include an introduction to quantum mechanics with particular reference to molecular properties and there are a number of excellent textbooks aimed specifically at undergraduate chemists. In valence theory and molecular spectroscopy physical concepts are often encountered that are normally taken on trust. For example, electron spin and the anomalous magnetic moment of the electron are usually accepted as postulates, although they are well understood by physicists. In addition, the advent of new techniques has led to experimental situations that can only be accounted for adequately by relatively sophisticated physical theory. Relativis tic corrections to molecular orbital energies are needed to explain X-ray photo electron spectra, while the use oflasers can give rise to multiphoton transitions, which are not easy to understand using the classical theory of radiation. Of course, the relevant equations may be extracted from the literature, but, if the underlying physics is not understood, this is a practice that is at best dissatisfy ing and at worst dangerous. One instance where great care must be taken is in the use of spectroscopically determined parameters to test the accuracy of elec tronic wave functions.
Publisher: Springer Science & Business Media
ISBN: 9400956886
Category : Science
Languages : en
Pages : 251
Book Description
This book is primarily intended for graduate chemists and chemical physicists. Indeed, it is based on a graduate course that I give in the Chemistry Depart ment of Southampton University. Nowadays undergraduate chemistry courses usually include an introduction to quantum mechanics with particular reference to molecular properties and there are a number of excellent textbooks aimed specifically at undergraduate chemists. In valence theory and molecular spectroscopy physical concepts are often encountered that are normally taken on trust. For example, electron spin and the anomalous magnetic moment of the electron are usually accepted as postulates, although they are well understood by physicists. In addition, the advent of new techniques has led to experimental situations that can only be accounted for adequately by relatively sophisticated physical theory. Relativis tic corrections to molecular orbital energies are needed to explain X-ray photo electron spectra, while the use oflasers can give rise to multiphoton transitions, which are not easy to understand using the classical theory of radiation. Of course, the relevant equations may be extracted from the literature, but, if the underlying physics is not understood, this is a practice that is at best dissatisfy ing and at worst dangerous. One instance where great care must be taken is in the use of spectroscopically determined parameters to test the accuracy of elec tronic wave functions.
Advanced Quantum Mechanics
Author: Freeman J. Dyson
Publisher: World Scientific
ISBN: 9814383422
Category : Science
Languages : en
Pages : 316
Book Description
Renowned physicist and mathematician Freeman Dyson is famous for his work in quantum mechanics, nuclear weapons policy and bold visions for the future of humanity. In the 1940s, he was responsible for demonstrating the equivalence of the two formulations of quantum electrodynamics OCo Richard Feynman''s diagrammatic path integral formulation and the variational methods developed by Julian Schwinger and Sin-Itiro Tomonoga OCo showing the mathematical consistency of QED. This invaluable volume comprises the legendary lectures on quantum electrodynamics first given by Dyson at Cornell University in 1951. The late theorist Edwin Thompson Jaynes once remarked, OC For a generation of physicists they were the happy medium: clearer and better motivated than Feynman, and getting to the point faster than SchwingerOCO. This edition has been printed on the 60th anniversary of the Cornell lectures, and includes a foreword by science historian David Kaiser, as well as notes from Dyson''s lectures at the Les Houches Summer School of Theoretical Physics in 1954. The Les Houches lectures, described as a supplement to the original Cornell notes, provide a more detailed look at field theory, a careful and rigorous derivation of Fermi''s Golden Rule, and a masterful treatment of renormalization and Ward''s Identity. Future generations of physicists are bound to read these lectures with pleasure, benefiting from the lucid style that is so characteristic of Dyson''s exposition.
Publisher: World Scientific
ISBN: 9814383422
Category : Science
Languages : en
Pages : 316
Book Description
Renowned physicist and mathematician Freeman Dyson is famous for his work in quantum mechanics, nuclear weapons policy and bold visions for the future of humanity. In the 1940s, he was responsible for demonstrating the equivalence of the two formulations of quantum electrodynamics OCo Richard Feynman''s diagrammatic path integral formulation and the variational methods developed by Julian Schwinger and Sin-Itiro Tomonoga OCo showing the mathematical consistency of QED. This invaluable volume comprises the legendary lectures on quantum electrodynamics first given by Dyson at Cornell University in 1951. The late theorist Edwin Thompson Jaynes once remarked, OC For a generation of physicists they were the happy medium: clearer and better motivated than Feynman, and getting to the point faster than SchwingerOCO. This edition has been printed on the 60th anniversary of the Cornell lectures, and includes a foreword by science historian David Kaiser, as well as notes from Dyson''s lectures at the Les Houches Summer School of Theoretical Physics in 1954. The Les Houches lectures, described as a supplement to the original Cornell notes, provide a more detailed look at field theory, a careful and rigorous derivation of Fermi''s Golden Rule, and a masterful treatment of renormalization and Ward''s Identity. Future generations of physicists are bound to read these lectures with pleasure, benefiting from the lucid style that is so characteristic of Dyson''s exposition.
Advanced Quantum Mechanics
Author: Yuli V. Nazarov
Publisher: Cambridge University Press
ISBN: 0521761506
Category : Science
Languages : en
Pages : 369
Book Description
An accessible introduction to advanced quantum theory, this textbook focuses on its practical applications and is ideal for graduate students in physics.
Publisher: Cambridge University Press
ISBN: 0521761506
Category : Science
Languages : en
Pages : 369
Book Description
An accessible introduction to advanced quantum theory, this textbook focuses on its practical applications and is ideal for graduate students in physics.
Elements of Advanced Quantum Theory
Author: J. M. Ziman
Publisher: Cambridge University Press
ISBN: 9780521099493
Category : Science
Languages : en
Pages : 286
Book Description
This textbook gives a connected mathematical derivation of the important mathematical results, concentrating on the central ideas without including elaborate detail or unnecessary rigour, and explaining in the simplest terms the symbols and concepts which confront the researcher in solid state, nuclear or high-energy physics.
Publisher: Cambridge University Press
ISBN: 9780521099493
Category : Science
Languages : en
Pages : 286
Book Description
This textbook gives a connected mathematical derivation of the important mathematical results, concentrating on the central ideas without including elaborate detail or unnecessary rigour, and explaining in the simplest terms the symbols and concepts which confront the researcher in solid state, nuclear or high-energy physics.
Principles of Quantum Mechanics
Author: R. Shankar
Publisher: Springer Science & Business Media
ISBN: 147570576X
Category : Science
Languages : en
Pages : 676
Book Description
R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.
Publisher: Springer Science & Business Media
ISBN: 147570576X
Category : Science
Languages : en
Pages : 676
Book Description
R. Shankar has introduced major additions and updated key presentations in this second edition of Principles of Quantum Mechanics. New features of this innovative text include an entirely rewritten mathematical introduction, a discussion of Time-reversal invariance, and extensive coverage of a variety of path integrals and their applications. Additional highlights include: - Clear, accessible treatment of underlying mathematics - A review of Newtonian, Lagrangian, and Hamiltonian mechanics - Student understanding of quantum theory is enhanced by separate treatment of mathematical theorems and physical postulates - Unsurpassed coverage of path integrals and their relevance in contemporary physics The requisite text for advanced undergraduate- and graduate-level students, Principles of Quantum Mechanics, Second Edition is fully referenced and is supported by many exercises and solutions. The book’s self-contained chapters also make it suitable for independent study as well as for courses in applied disciplines.
Advanced Concepts in Quantum Mechanics
Author: Giampiero Esposito
Publisher: Cambridge University Press
ISBN: 1107076048
Category : Science
Languages : en
Pages : 399
Book Description
This book introduces a geometric view of fundamental physics, ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics.
Publisher: Cambridge University Press
ISBN: 1107076048
Category : Science
Languages : en
Pages : 399
Book Description
This book introduces a geometric view of fundamental physics, ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics.