Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation PDF Author: Eric Scott Keldrauk
Publisher:
ISBN:
Category :
Languages : en
Pages : 742

Get Book Here

Book Description
The commissioning and construction of new nuclear power plants in the United States has dwindled over the past 30 years despite significant innovation in reactor technology. This is partially due to the ever-increasing seismic hazard estimates, which increases the demand on and risk to nuclear power plant structures. Seismic base isolation is a mature technology which introduces a laterally-flexible and vertically-stiff layer between the foundation and superstructure to significantly reduce the seismic response of the structure, systems, and components therein. Such devices have also been noted to concentrate the displacement response in one plane, reduce higher-mode participation, and provide damping to protect against excessive displacements, all of which aid in increasing safety margins for seismically-isolated nuclear structures. Despite numerous studies analyzing the applicability of seismic base isolation to nuclear power plant structures, some of which are discussed herein, no seismically-isolated nuclear plant has been constructed in the United States. This study presents a time-domain procedure for analyzing the performance of seismically-isolated nuclear structures in response to design-basis earthquake events using ALE3D. The simulations serve as a parametric study to assess the effects of soil column type, seismic isolation model, superstructure mesh, and ground motion selection on global displacements, rotations, and accelerations, as well as internal floor accelerations. Explicit modeling of the soil columns and superstructures enables detailed analysis of soil-structure interaction. The soil columns analyzed have constant properties over the height of the finite element soil mesh and include rock, soft rock, and stiff soil sites, as well as a "no soil" case for comparison. Four separate 3-dimensional seismic isolation bearing models were coded into ALE3D and validated. These include models for friction pendulum, triple friction pendulum, simplified lead rubber, and robust lead rubber bearings. Lastly, two superstructure finite element meshes were considered: a cylindrical plant design meant to represent a typical conceptual design for advanced reactors, and a rectangular plant design meant to represent an advanced boiling water reactor. The ground motions considered include 30 three-component time history records scaled to meet the seismic hazard for the Diablo Canyon nuclear plant. Every combination of soil column, isolator model, and superstructure were subjected to a subset of three of the harshest ground motions, termed the "basic motions", and the combinations which included the rectangular plant design atop the rock soil column were subjected to all 30 motions. The results of the various simulations including accelerations in the soil columns and superstructures as well as displacements and rotations in the isolators and superstructures are presented. The results suggest three possible effects: an isolator-type effect, a soil-type effect, and a slenderness effect. The isolator-type effect refers to significant increases in vertical soil acceleration amplifications, isolator uplift/tension, and global rotations including torsion and overturning for friction bearings in comparison to elastomeric bearings. Additionally it is noted that inclusion of lead plug softening has the effect of increasing peak lateral isolator deformations, especially for the ground motions that naturally induce high-amplitude deformations in the bearings. These results suggest that uplift/tension may be troublesome in high-seismic areas and the use of restrainers should be analyzed as a possible solution. Furthermore, these results reinforce the lateral design displacement estimate procedures for seismically-isolated nuclear structures in ASCE4-11. The results prove that explicit inclusion of the soil column is necessary for proper response characterization and the chosen soil properties greatly affect the efficacy of seismic isolation designs. The soil-type effect comes from observations of comparative simulations which show that, in general, peak isolator uplift/tension and deformation, as well as peak global displacements and rotations including torsion and overturning increase as the soil column becomes less-stiff, regardless of the isolator model or superstructure considered. These results suggest that although seismic isolation can be effective for structures atop a variety of soil columns, it is imperative that a single isolator design only be considered applicable to a corresponding soil column unless extensive analyses prove otherwise for a specific case. Differences in peak response parameters between the two superstructures point to a possible slenderness effect. Specifically, the isolator deformations as well as the global displacements and rotations are observed to increase for the cylindrical superstructure in comparison to the rectangular superstructure cases utilizing the same ground motion, soil column, and isolator model. Should further research reaffirm this effect, a practical limit could be set for superstructure slenderness.

Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation PDF Author: Eric Scott Keldrauk
Publisher:
ISBN:
Category :
Languages : en
Pages : 742

Get Book Here

Book Description
The commissioning and construction of new nuclear power plants in the United States has dwindled over the past 30 years despite significant innovation in reactor technology. This is partially due to the ever-increasing seismic hazard estimates, which increases the demand on and risk to nuclear power plant structures. Seismic base isolation is a mature technology which introduces a laterally-flexible and vertically-stiff layer between the foundation and superstructure to significantly reduce the seismic response of the structure, systems, and components therein. Such devices have also been noted to concentrate the displacement response in one plane, reduce higher-mode participation, and provide damping to protect against excessive displacements, all of which aid in increasing safety margins for seismically-isolated nuclear structures. Despite numerous studies analyzing the applicability of seismic base isolation to nuclear power plant structures, some of which are discussed herein, no seismically-isolated nuclear plant has been constructed in the United States. This study presents a time-domain procedure for analyzing the performance of seismically-isolated nuclear structures in response to design-basis earthquake events using ALE3D. The simulations serve as a parametric study to assess the effects of soil column type, seismic isolation model, superstructure mesh, and ground motion selection on global displacements, rotations, and accelerations, as well as internal floor accelerations. Explicit modeling of the soil columns and superstructures enables detailed analysis of soil-structure interaction. The soil columns analyzed have constant properties over the height of the finite element soil mesh and include rock, soft rock, and stiff soil sites, as well as a "no soil" case for comparison. Four separate 3-dimensional seismic isolation bearing models were coded into ALE3D and validated. These include models for friction pendulum, triple friction pendulum, simplified lead rubber, and robust lead rubber bearings. Lastly, two superstructure finite element meshes were considered: a cylindrical plant design meant to represent a typical conceptual design for advanced reactors, and a rectangular plant design meant to represent an advanced boiling water reactor. The ground motions considered include 30 three-component time history records scaled to meet the seismic hazard for the Diablo Canyon nuclear plant. Every combination of soil column, isolator model, and superstructure were subjected to a subset of three of the harshest ground motions, termed the "basic motions", and the combinations which included the rectangular plant design atop the rock soil column were subjected to all 30 motions. The results of the various simulations including accelerations in the soil columns and superstructures as well as displacements and rotations in the isolators and superstructures are presented. The results suggest three possible effects: an isolator-type effect, a soil-type effect, and a slenderness effect. The isolator-type effect refers to significant increases in vertical soil acceleration amplifications, isolator uplift/tension, and global rotations including torsion and overturning for friction bearings in comparison to elastomeric bearings. Additionally it is noted that inclusion of lead plug softening has the effect of increasing peak lateral isolator deformations, especially for the ground motions that naturally induce high-amplitude deformations in the bearings. These results suggest that uplift/tension may be troublesome in high-seismic areas and the use of restrainers should be analyzed as a possible solution. Furthermore, these results reinforce the lateral design displacement estimate procedures for seismically-isolated nuclear structures in ASCE4-11. The results prove that explicit inclusion of the soil column is necessary for proper response characterization and the chosen soil properties greatly affect the efficacy of seismic isolation designs. The soil-type effect comes from observations of comparative simulations which show that, in general, peak isolator uplift/tension and deformation, as well as peak global displacements and rotations including torsion and overturning increase as the soil column becomes less-stiff, regardless of the isolator model or superstructure considered. These results suggest that although seismic isolation can be effective for structures atop a variety of soil columns, it is imperative that a single isolator design only be considered applicable to a corresponding soil column unless extensive analyses prove otherwise for a specific case. Differences in peak response parameters between the two superstructures point to a possible slenderness effect. Specifically, the isolator deformations as well as the global displacements and rotations are observed to increase for the cylindrical superstructure in comparison to the rectangular superstructure cases utilizing the same ground motion, soil column, and isolator model. Should further research reaffirm this effect, a practical limit could be set for superstructure slenderness.

Response Control and Seismic Isolation of Buildings

Response Control and Seismic Isolation of Buildings PDF Author: Masahiko Higashino
Publisher: Routledge
ISBN: 113422480X
Category : Business & Economics
Languages : en
Pages : 414

Get Book Here

Book Description
This state of the art report from an international task group (TG44) of CIB, the International Council of Building Research Organizations, presents a highly authoritative guide to the application of innovative technologies on response control and seismic isolation of buildings to practice worldwide. Many countries and cities are located in earthquake-prone areas making effective seismic design a major issue in structural engineering. Reassuringly, structural response control and seismic isolation have advanced remarkably in recent years following numerous studies internationally. Several major conferences have been held and reports have been written but little has been issued on the application of the technologies to good structural engineering practice. Plugging that gap, Response Control and Seismic Isolation of Buildings presents researchers in structural engineering (dynamics) and construction management with up-to-date applications of the latest technologies.

Experimental and Numerical Simulation of Seismically Isolated Critical Facilities Under Extreme Seismic Loading

Experimental and Numerical Simulation of Seismically Isolated Critical Facilities Under Extreme Seismic Loading PDF Author: Alireza Sarebanha
Publisher:
ISBN:
Category :
Languages : en
Pages : 241

Get Book Here

Book Description
Seismic isolation can be an effective strategy to protect critical facilities including Nuclear Power Plants (NPPs) from the damaging effects of horizontal earthquake ground shaking. For critical facilities, the isolation system should demonstrate a high-confidence of low-probability of failure at the design level and the load carrying capacities should be maintained under beyond design earthquake shaking (BDBE). Experimental evaluation of seismic isolation bearings is important to fully understand their behavior and capacity for reliable performance. Safety mechanisms such as a stop can be imposed to prevent excessive displacement of the isolation system under BDBE, however, this raises concerns for detrimental effects of pounding against a stop or moat wall. Methods of analysis are presented in this dissertation to evaluate both seismic isolation system behavior under extreme earthquakes and the potential effects of pounding by imposing displacement restraints. The dynamic response of an isolated NPP depends on the combined characteristics of the ground motion, bearings, and structure while the seismic isolation bearings themselves can exhibit complex nonlinear behavior that depends on several factors, including the scale size, axial load, temperature, and rate of loading especially under strong earthquake shaking. With a specific interest on the in-structure response of seismically isolated NPPs, hybrid simulation is shown to be a viable approach to examine bearing behavior at full scale under realistic earthquake loading. The adaptation of a full-scale bearing test machine (SRMD testing facility at UC San Diego) and developed toolsets for the implementation of fast hybrid simulation to study the dynamic response of base isolated NPP using full scale lead plug rubber bearings under realistic earthquake loading conditions are presented. Results from these tests validate the effectiveness of seismic isolation technology for application in nuclear facilities and provide valuable data towards improving numerical models of seismic isolation bearings. In a seismically isolated NPP, a surrounding moat wall can function as a stop to limit isolation system displacements and prevent bearing failure for beyond design basis shaking. Impact of isolated structures against a moat wall is of concern due to potential amplification of superstructure response. A moat wall model able to capture impact forces is proposed and used in numerical simulations to capture the effects of impact on the response of seismically isolated NPPs. Variable clearance to the stop and a range of properties for the impact model, moat wall and isolation system are considered to identify parameters that influence the response. Results indicate that large NPP plants as considered here can have significant penetration into the moat wall, not fully limiting displacements in the isolation system, while causing considerable increases in accelerations throughout the NPP. A simplified methodology to estimate impact response parameters including penetration is proposed towards developing design tools that consider these effects.

Earthquake Engineering for Nuclear Facilities

Earthquake Engineering for Nuclear Facilities PDF Author: Masanori Hamada
Publisher: Springer
ISBN: 9811025169
Category : Technology & Engineering
Languages : en
Pages : 304

Get Book Here

Book Description
This book is a comprehensive compilation of earthquake- and tsunami-related technologies and knowledge for the design and construction of nuclear facilities. As such, it covers a wide range of fields including civil engineering, architecture, geotechnical engineering, mechanical engineering, and nuclear engineering, for the development of new technologies providing greater resistance against earthquakes and tsunamis. It is crucial both for students of nuclear energy courses and for young engineers in nuclear power generation industries to understand the basics and principles of earthquake- and tsunami-resistant design of nuclear facilities. In Part I, "Seismic Design of Nuclear Power Plants", the design of nuclear power plants to withstand earthquakes and tsunamis is explained, focusing on buildings, equipment's, and civil engineering structures. In Part II, "Basics of Earthquake Engineering", fundamental knowledge of earthquakes and tsunamis as well as the dynamic response of structures and foundation ground are explained.

Seismic Response of Base-isolated Buildings Using a Viscoelastic Model

Seismic Response of Base-isolated Buildings Using a Viscoelastic Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 7

Get Book Here

Book Description
Due to recent developments in elastomer technology, seismic isolation using elastomer bearings is rapidly gaining acceptance as a design tool to enhance structural seismic margins and to protect people and equipment from earthquake damage. With proper design of isolators, the fundamental frequency of the structure can be reduced to a value that is lower than the dominant frequencies of earthquake ground motions. The other feature of an isolation system is that it can provide a mechanism for energy dissipation. In the USA, the use of seismic base-isolation has become an alternate strategy for advanced Liquid Metal-cooled Reactors (LMRs). ANL has been deeply involved in the development and implementation of seismic isolation for use in both nuclear facilities and civil structures for the past decade. Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. They were built side by side in a seismically active area. In 1988, the ANL/Shimizu Joint Program was established to study the differences in behavior of base-isolated and ordinarily founded structures when subjected to earthquake loading. A more comprehensive description of this joint program is presented in a companion paper (Wang et al. 1993). With the increased use of elastomeric polymers in industrial applications such as isolation bearings, the importance of constitutive modeling of viscoelastic materials is more and more pronounced. A realistic representation of material behavior is essential for computer simulations to replicate the response observed in experiments.

Estimating the Seismic Response of Base-isolated Buildings Including Torsion, Rocking, and Axial-load Effects

Estimating the Seismic Response of Base-isolated Buildings Including Torsion, Rocking, and Axial-load Effects PDF Author: Keri Lynn Ryan
Publisher:
ISBN:
Category : Axial loads
Languages : en
Pages : 506

Get Book Here

Book Description


Evaluation of Building Resilience under Earthquake Input Using Single, Double and Multiple Impulses

Evaluation of Building Resilience under Earthquake Input Using Single, Double and Multiple Impulses PDF Author: Izuru Takewaki
Publisher: Frontiers Media SA
ISBN: 2889452700
Category :
Languages : en
Pages : 63

Get Book Here

Book Description
This eBook is the third in a series of books on the critical earthquake response of elastic or elastic-plastic structures under near-fault or long-duration ground motions, and includes four original research papers which were published in the specialty section Earthquake Engineering in ‘Frontiers in Built Environment’. Several extensions of the first eBook and the second eBook are included here. The first article is on the earthquake resilience of residential houses after repeated ground motions with high intensity. The 2016 Kumamoto earthquake brought a significant impact on the earthquake resilience of residential houses under repeated ground motions with high intensity in a few days. The necessary strength upgrade withstanding two repeated high-intensity ground motions was found to be 1.5. The second article is concerned with the smart enhancement of earthquake resilience of building structures under both near-fault and long-duration ground motions. A hybrid system of base-isolation and building connection control was proposed and its earthquake resilience to near-fault and long-duration ground motions was evaluated by a double impulse and a multiple impulse. It was demonstrated that the base-isolation is effective for near-fault ground motions and the building connection system using passive dampers is effective for long-duration ground motions. The third article is related to the robustness evaluation of elastic-plastic base-isolated high-rise buildings under resonant near-fault ground motions. The robustness function was introduced to evaluate quantitatively the robustness of elastic-plastic base-isolated high-rise buildings. The fourth article is an extension of the previously proposed energy balance approach to a bilinear elastic-plastic single-degree-of-freedom system under a long-duration sinusoidal ground motion. A historical difficulty in nonlinear vibration posed by Caughey (1960) and Iwan (1961) has been overcome in a smart manner after half a century. The approach presented in this eBook, together with the previous eBooks, is an epoch-making accomplishment to open the door for simpler and deeper understanding of structural reliability and resilience of built environments in the elastic-plastic and nonlinear range.

Response of a Base-isolated Large Liquid Metal Reactor Plant to Seismic Loads

Response of a Base-isolated Large Liquid Metal Reactor Plant to Seismic Loads PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
In recent years, base isolation has been applied to various civil structures such as bridges and buildings for the purpose of reducing its acceleration to below the level of ground accelerations during seismic events. The basic principal of base isolation is to introduce a soft layer of material between structure foundation to allow a degree of flexibility in horizontal motions which could reduce the seismic accelerations during earthquakes. If base isolation is properly designed, it shifts the fundamental frequency of the structure away from the damaging frequency range of earthquakes. Thus, the seismic loads transmitted to the structure can be greatly reduced. This is particularly important in Liquid Metal Reactor (LMR) plants, because the components of primary system such as reactor vessel and piping loops are designed to be thin-walled structures and have little inherent seismic resistance. Thus, the use of base isolation offers a viable and effective approach that permits the reactor structures to better withstand the seismic loading. This paper deals with the seismic response of a base isolated large-scale LMR plant. The analysis model was based on a preliminary nuclear island layout developed by EPRI during the concept development phase of the large-scale prototype breeder (LSPB) project. The nuclear island has a dimension of 184'-0'' x 210'-6''; the reactor vessel has an ID of 62 ft and an overall length of 70 ft. Two soil conditions have been considered in the analysis. One is a hard-soil site having a shear wave velocity of 6000 ft/s, and the other is a soft-soil site having a shear wave velocity of 2000 ft/s. For comparison purposes, the responses of a conventional plant (unisolated) was also analyzed. 3 figs., 1 tab.

Comparison of Seismic Response of Ordinary and Base-isolated Structures

Comparison of Seismic Response of Ordinary and Base-isolated Structures PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 8

Get Book Here

Book Description
Seismic isolation is growing rapidly worldwide as a cost-effective and reliable design strategy for a wide range of critical and important facilities (e.g., hospitals, computer centers, etc.) Shimizu Corporation of Japan has a test facility at Tohoku University in Sendai, Japan. The test facility was constructed in 1986 and has two buildings: one is base isolated and the other is conventionally founded. The buildings are full-size, three-story reinforced concrete structures. The dimensions and construction of the superstructures are identical. For the past several years, Shimizu Corporation has installed a number of different isolation systems in the isolated building at the test facility to study the response of base isolation systems to actual earthquake motions. Argonne National Laboratory (ANL) has been deeply involved in the development of seismic isolation for use in nuclear facilities for the past decade. Using the funding and direction of the US Department of Energy (USDOE), ANL has been developing methodology needed to evaluate the usefulness and effectiveness of seismic isolation for advanced liquid metal-cooled reactors (LMRs). This paper compares the seismic responses of ordinary and base-isolated buildings. Earthquake records of significant importance from April 1989 to September 1991, after the installation of bearings have been analyzed. Numerical simulations of the building responses have been performed and correlated with earthquake observation data. It is hoped that the results of this study will provide guidelines for the future use of isolator bearings for mitigation of earthquake damages.

Performance Assessment of Conventional and Base-isolated Nuclear Power Plants for Earthquake and Blast Loadings

Performance Assessment of Conventional and Base-isolated Nuclear Power Plants for Earthquake and Blast Loadings PDF Author: Yin-Nan Huang
Publisher:
ISBN:
Category : Earthquake engineering
Languages : en
Pages : 404

Get Book Here

Book Description