Author: Tomas Dominguez Benavides
Publisher: World Scientific
ISBN: 9812818448
Category : Mathematics
Languages : en
Pages : 209
Book Description
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.
Advanced Courses of Mathematical Analysis III
Author: Tomas Dominguez Benavides
Publisher: World Scientific
ISBN: 9812818448
Category : Mathematics
Languages : en
Pages : 209
Book Description
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.
Publisher: World Scientific
ISBN: 9812818448
Category : Mathematics
Languages : en
Pages : 209
Book Description
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.
Advanced Calculus
Author: Patrick Fitzpatrick
Publisher: American Mathematical Soc.
ISBN: 0821847910
Category : Mathematics
Languages : en
Pages : 610
Book Description
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.
Publisher: American Mathematical Soc.
ISBN: 0821847910
Category : Mathematics
Languages : en
Pages : 610
Book Description
"Advanced Calculus is intended as a text for courses that furnish the backbone of the student's undergraduate education in mathematical analysis. The goal is to rigorously present the fundamental concepts within the context of illuminating examples and stimulating exercises. This book is self-contained and starts with the creation of basic tools using the completeness axiom. The continuity, differentiability, integrability, and power series representation properties of functions of a single variable are established. The next few chapters describe the topological and metric properties of Euclidean space. These are the basis of a rigorous treatment of differential calculus (including the Implicit Function Theorem and Lagrange Multipliers) for mappings between Euclidean spaces and integration for functions of several real variables."--pub. desc.
Advanced Courses Of Mathematical Analysis Iii - Proceedings Of The Third International School
Author: Tomas Dominguez Benavides
Publisher: World Scientific
ISBN: 981447083X
Category : Mathematics
Languages : en
Pages : 209
Book Description
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.
Publisher: World Scientific
ISBN: 981447083X
Category : Mathematics
Languages : en
Pages : 209
Book Description
This volume comprises a collection of articles by leading researchers in mathematical analysis. It provides the reader with an extensive overview of the present-day research in different areas of mathematical analysis (complex variable, harmonic analysis, real analysis and functional analysis) that holds great promise for current and future developments. These review articles are highly useful for those who want to learn about these topics, as many results scattered in the literature are reflected through the many separate papers featured herein.
Analysis III
Author: Herbert Amann
Publisher: Springer Science & Business Media
ISBN: 3764374802
Category : Mathematics
Languages : en
Pages : 477
Book Description
This third volume concludes our introduction to analysis, wherein we ?nish laying the groundwork needed for further study of the subject. As with the ?rst two, this volume contains more material than can treated in a single course. It is therefore important in preparing lectures to choose a suitable subset of its content; the remainder can be treated in seminars or left to independent study. For a quick overview of this content, consult the table of contents and the chapter introductions. Thisbookisalsosuitableasbackgroundforothercoursesorforselfstudy. We hope that its numerous glimpses into more advanced analysis will arouse curiosity and so invite students to further explore the beauty and scope of this branch of mathematics. In writing this volume, we counted on the invaluable help of friends, c- leagues, sta?, and students. Special thanks go to Georg Prokert, Pavol Quittner, Olivier Steiger, and Christoph Walker, who worked through the entire text cr- ically and so helped us remove errors and make substantial improvements. Our thanks also goes out to Carlheinz Kneisel and Bea Wollenmann, who likewise read the majority of the manuscript and pointed out various inconsistencies. Without the inestimable e?ortofour “typesetting perfectionist”, this volume could not have reached its present form: her tirelessness and patience with T X E and other software brought not only the end product, but also numerous previous versions,to a high degree of perfection. For this contribution, she has our greatest thanks.
Publisher: Springer Science & Business Media
ISBN: 3764374802
Category : Mathematics
Languages : en
Pages : 477
Book Description
This third volume concludes our introduction to analysis, wherein we ?nish laying the groundwork needed for further study of the subject. As with the ?rst two, this volume contains more material than can treated in a single course. It is therefore important in preparing lectures to choose a suitable subset of its content; the remainder can be treated in seminars or left to independent study. For a quick overview of this content, consult the table of contents and the chapter introductions. Thisbookisalsosuitableasbackgroundforothercoursesorforselfstudy. We hope that its numerous glimpses into more advanced analysis will arouse curiosity and so invite students to further explore the beauty and scope of this branch of mathematics. In writing this volume, we counted on the invaluable help of friends, c- leagues, sta?, and students. Special thanks go to Georg Prokert, Pavol Quittner, Olivier Steiger, and Christoph Walker, who worked through the entire text cr- ically and so helped us remove errors and make substantial improvements. Our thanks also goes out to Carlheinz Kneisel and Bea Wollenmann, who likewise read the majority of the manuscript and pointed out various inconsistencies. Without the inestimable e?ortofour “typesetting perfectionist”, this volume could not have reached its present form: her tirelessness and patience with T X E and other software brought not only the end product, but also numerous previous versions,to a high degree of perfection. For this contribution, she has our greatest thanks.
Advanced Mathematical Analysis
Author: R. Beals
Publisher: Springer Science & Business Media
ISBN: 146849886X
Category : Mathematics
Languages : en
Pages : 241
Book Description
Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate" advanced mathematics for science and engi neering" from what might be called "advanced mathematical analysis for mathematicians." It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass ing different examples.
Publisher: Springer Science & Business Media
ISBN: 146849886X
Category : Mathematics
Languages : en
Pages : 241
Book Description
Once upon a time students of mathematics and students of science or engineering took the same courses in mathematical analysis beyond calculus. Now it is common to separate" advanced mathematics for science and engi neering" from what might be called "advanced mathematical analysis for mathematicians." It seems to me both useful and timely to attempt a reconciliation. The separation between kinds of courses has unhealthy effects. Mathe matics students reverse the historical development of analysis, learning the unifying abstractions first and the examples later (if ever). Science students learn the examples as taught generations ago, missing modern insights. A choice between encountering Fourier series as a minor instance of the repre sentation theory of Banach algebras, and encountering Fourier series in isolation and developed in an ad hoc manner, is no choice at all. It is easy to recognize these problems, but less easy to counter the legiti mate pressures which have led to a separation. Modern mathematics has broadened our perspectives by abstraction and bold generalization, while developing techniques which can treat classical theories in a definitive way. On the other hand, the applier of mathematics has continued to need a variety of definite tools and has not had the time to acquire the broadest and most definitive grasp-to learn necessary and sufficient conditions when simple sufficient conditions will serve, or to learn the general framework encompass ing different examples.
Problems in Mathematical Analysis
Author: Wieslawa J. Kaczor
Publisher: American Mathematical Soc.
ISBN: 9780821884430
Category : Mathematical analysis
Languages : en
Pages : 400
Book Description
Publisher: American Mathematical Soc.
ISBN: 9780821884430
Category : Mathematical analysis
Languages : en
Pages : 400
Book Description
Analysis I
Author: Terence Tao
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366
Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Publisher: Springer
ISBN: 9811017891
Category : Mathematics
Languages : en
Pages : 366
Book Description
This is part one of a two-volume book on real analysis and is intended for senior undergraduate students of mathematics who have already been exposed to calculus. The emphasis is on rigour and foundations of analysis. Beginning with the construction of the number systems and set theory, the book discusses the basics of analysis (limits, series, continuity, differentiation, Riemann integration), through to power series, several variable calculus and Fourier analysis, and then finally the Lebesgue integral. These are almost entirely set in the concrete setting of the real line and Euclidean spaces, although there is some material on abstract metric and topological spaces. The book also has appendices on mathematical logic and the decimal system. The entire text (omitting some less central topics) can be taught in two quarters of 25–30 lectures each. The course material is deeply intertwined with the exercises, as it is intended that the student actively learn the material (and practice thinking and writing rigorously) by proving several of the key results in the theory.
Mathematical Analysis I
Author: Vladimir A. Zorich
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610
Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Publisher: Springer Science & Business Media
ISBN: 9783540403869
Category : Mathematics
Languages : en
Pages : 610
Book Description
This work by Zorich on Mathematical Analysis constitutes a thorough first course in real analysis, leading from the most elementary facts about real numbers to such advanced topics as differential forms on manifolds, asymptotic methods, Fourier, Laplace, and Legendre transforms, and elliptic functions.
Introduction to the Methods of Real Analysis
Author: Maurice Sion
Publisher: New York : Holt, Rinehart and Winston
ISBN:
Category : Functions of real variables
Languages : en
Pages : 152
Book Description
Pt. I. Topological concepts. 1. Elements of set theory -- 2. Spaces of functions -- 3. Elements of point set topology -- 4. Continuous functions -- pt. II. Measure theory. 5. Measures on abstract spaces -- 6. Lebesgue-Stieltjes measures -- 7. Integration -- 8. Differentiation -- 9. Riesz representation.
Publisher: New York : Holt, Rinehart and Winston
ISBN:
Category : Functions of real variables
Languages : en
Pages : 152
Book Description
Pt. I. Topological concepts. 1. Elements of set theory -- 2. Spaces of functions -- 3. Elements of point set topology -- 4. Continuous functions -- pt. II. Measure theory. 5. Measures on abstract spaces -- 6. Lebesgue-Stieltjes measures -- 7. Integration -- 8. Differentiation -- 9. Riesz representation.
Advanced Courses Of Mathematical Analysis Vi - Proceedings Of The Sixth International School
Author: Francisco Javier Martin-reyes
Publisher: World Scientific
ISBN: 9813147652
Category : Mathematics
Languages : en
Pages : 248
Book Description
This volume contains short courses and recent papers by several specialists in different fields of Mathematical Analysis. It offers a wide perspective of the current state of research, and new trends, in areas related to Geometric Analysis, Harmonic Analysis, Complex Analysis, Functional Analysis and History of Mathematics. The contributions are presented with a remarkable expository nature and this makes the discussed topics accessible to a more general audience.
Publisher: World Scientific
ISBN: 9813147652
Category : Mathematics
Languages : en
Pages : 248
Book Description
This volume contains short courses and recent papers by several specialists in different fields of Mathematical Analysis. It offers a wide perspective of the current state of research, and new trends, in areas related to Geometric Analysis, Harmonic Analysis, Complex Analysis, Functional Analysis and History of Mathematics. The contributions are presented with a remarkable expository nature and this makes the discussed topics accessible to a more general audience.