Advanced Analytic Methods in Applied Mathematics, Science, and Engineering

Advanced Analytic Methods in Applied Mathematics, Science, and Engineering PDF Author: Hung Cheng
Publisher: Luban Press
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 512

Get Book Here

Book Description

Advanced Analytic Methods in Applied Mathematics, Science, and Engineering

Advanced Analytic Methods in Applied Mathematics, Science, and Engineering PDF Author: Hung Cheng
Publisher: Luban Press
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 512

Get Book Here

Book Description


Advanced Mathematical Methods in Science and Engineering

Advanced Mathematical Methods in Science and Engineering PDF Author: S.I. Hayek
Publisher: CRC Press
ISBN: 1420081985
Category : Mathematics
Languages : en
Pages : 862

Get Book Here

Book Description
Classroom-tested, Advanced Mathematical Methods in Science and Engineering, Second Edition presents methods of applied mathematics that are particularly suited to address physical problems in science and engineering. Numerous examples illustrate the various methods of solution and answers to the end-of-chapter problems are included at the back of the book. After introducing integration and solution methods of ordinary differential equations (ODEs), the book presents Bessel and Legendre functions as well as the derivation and methods of solution of linear boundary value problems for physical systems in one spatial dimension governed by ODEs. It also covers complex variables, calculus, and integrals; linear partial differential equations (PDEs) in classical physics and engineering; the derivation of integral transforms; Green’s functions for ODEs and PDEs; asymptotic methods for evaluating integrals; and the asymptotic solution of ODEs. New to this edition, the final chapter offers an extensive treatment of numerical methods for solving non-linear equations, finite difference differentiation and integration, initial value and boundary value ODEs, and PDEs in mathematical physics. Chapters that cover boundary value problems and PDEs contain derivations of the governing differential equations in many fields of applied physics and engineering, such as wave mechanics, acoustics, heat flow in solids, diffusion of liquids and gases, and fluid flow. An update of a bestseller, this second edition continues to give students the strong foundation needed to apply mathematical techniques to the physical phenomena encountered in scientific and engineering applications.

Applied Mathematics for Science and Engineering

Applied Mathematics for Science and Engineering PDF Author: Larry A. Glasgow
Publisher: John Wiley & Sons
ISBN: 1118749839
Category : Technology & Engineering
Languages : en
Pages : 256

Get Book Here

Book Description
Prepare students for success in using applied mathematics for engineering practice and post-graduate studies Moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade’s worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

Introduction to Matrix Analytic Methods in Stochastic Modeling

Introduction to Matrix Analytic Methods in Stochastic Modeling PDF Author: G. Latouche
Publisher: SIAM
ISBN: 0898714257
Category : Mathematics
Languages : en
Pages : 331

Get Book Here

Book Description
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.

Handbook of Analytic Computational Methods in Applied Mathematics

Handbook of Analytic Computational Methods in Applied Mathematics PDF Author: George Anastassiou
Publisher: CRC Press
ISBN: 0429525117
Category : Mathematics
Languages : en
Pages : 682

Get Book Here

Book Description
Working computationally in applied mathematics is the very essence of dealing with real-world problems in science and engineering. Approximation theory-on the borderline between pure and applied mathematics- has always supplied some of the most innovative ideas, computational methods, and original approaches to many types of problems. The f

Mathematical Methods in Science and Engineering

Mathematical Methods in Science and Engineering PDF Author: Selcuk S. Bayin
Publisher: John Wiley & Sons
ISBN: 1119425395
Category : Education
Languages : en
Pages : 742

Get Book Here

Book Description
A Practical, Interdisciplinary Guide to Advanced Mathematical Methods for Scientists and Engineers Mathematical Methods in Science and Engineering, Second Edition, provides students and scientists with a detailed mathematical reference for advanced analysis and computational methodologies. Making complex tools accessible, this invaluable resource is designed for both the classroom and the practitioners; the modular format allows flexibility of coverage, while the text itself is formatted to provide essential information without detailed study. Highly practical discussion focuses on the “how-to” aspect of each topic presented, yet provides enough theory to reinforce central processes and mechanisms. Recent growing interest in interdisciplinary studies has brought scientists together from physics, chemistry, biology, economy, and finance to expand advanced mathematical methods beyond theoretical physics. This book is written with this multi-disciplinary group in mind, emphasizing practical solutions for diverse applications and the development of a new interdisciplinary science. Revised and expanded for increased utility, this new Second Edition: Includes over 60 new sections and subsections more useful to a multidisciplinary audience Contains new examples, new figures, new problems, and more fluid arguments Presents a detailed discussion on the most frequently encountered special functions in science and engineering Provides a systematic treatment of special functions in terms of the Sturm-Liouville theory Approaches second-order differential equations of physics and engineering from the factorization perspective Includes extensive discussion of coordinate transformations and tensors, complex analysis, fractional calculus, integral transforms, Green's functions, path integrals, and more Extensively reworked to provide increased utility to a broader audience, this book provides a self-contained three-semester course for curriculum, self-study, or reference. As more scientific disciplines begin to lean more heavily on advanced mathematical analysis, this resource will prove to be an invaluable addition to any bookshelf.

Fundamentals of Matrix-Analytic Methods

Fundamentals of Matrix-Analytic Methods PDF Author: Qi-Ming He
Publisher: Springer Science & Business Media
ISBN: 1461473306
Category : Computers
Languages : en
Pages : 363

Get Book Here

Book Description
Fundamentals of Matrix-Analytic Methods targets advanced-level students in mathematics, engineering and computer science. It focuses on the fundamental parts of Matrix-Analytic Methods, Phase-Type Distributions, Markovian arrival processes and Structured Markov chains and matrix geometric solutions. New materials and techniques are presented for the first time in research and engineering design. This book emphasizes stochastic modeling by offering probabilistic interpretation and constructive proofs for Matrix-Analytic Methods. Such an approach is especially useful for engineering analysis and design. Exercises and examples are provided throughout the book.

Lecture Notes on Applied Analysis

Lecture Notes on Applied Analysis PDF Author:
Publisher: World Scientific
ISBN: 981428775X
Category :
Languages : en
Pages : 303

Get Book Here

Book Description


Applied Asymptotic Analysis

Applied Asymptotic Analysis PDF Author: Peter David Miller
Publisher: American Mathematical Soc.
ISBN: 0821840789
Category : Mathematics
Languages : en
Pages : 488

Get Book Here

Book Description
This book is a survey of asymptotic methods set in the current applied research context of wave propagation. It stresses rigorous analysis in addition to formal manipulations. Asymptotic expansions developed in the text are justified rigorously, and students are shown how to obtain solid error estimates for asymptotic formulae. The book relates examples and exercises to subjects of current research interest, such as the problem of locating the zeros of Taylor polynomials of entirenonvanishing functions and the problem of counting integer lattice points in subsets of the plane with various geometrical properties of the boundary. The book is intended for a beginning graduate course on asymptotic analysis in applied mathematics and is aimed at students of pure and appliedmathematics as well as science and engineering. The basic prerequisite is a background in differential equations, linear algebra, advanced calculus, and complex variables at the level of introductory undergraduate courses on these subjects. The book is ideally suited to the needs of a graduate student who, on the one hand, wants to learn basic applied mathematics, and on the other, wants to understand what is needed to make the various arguments rigorous. Down here in the Village, this is knownas the Courant point of view!! --Percy Deift, Courant Institute, New York Peter D. Miller is an associate professor of mathematics at the University of Michigan at Ann Arbor. He earned a Ph.D. in Applied Mathematics from the University of Arizona and has held positions at the Australian NationalUniversity (Canberra) and Monash University (Melbourne). His current research interests lie in singular limits for integrable systems.

Engineering Analysis

Engineering Analysis PDF Author: Merle C. Potter
Publisher: Springer
ISBN: 3319916831
Category : Technology & Engineering
Languages : en
Pages : 444

Get Book Here

Book Description
The purpose of this book is to introduce undergraduate students of engineering and the physical sciences to applied mathematics often essential to the successful solutions of practical problems. The topics selected are a review of Differential Equations, Laplace Transforms, Matrices and Determinants, Vector Analysis, Partial Differential Equations, Complex Variables, and Numerical Methods. The style of presentation is such that the step-by-step derivations may be followed by the reader with minimum assistance. Liberal use of approximately 160 examples and 1000 homework problems serves to aid students in their study. This book presents mathematical topics using derivations (similar to the technique used in engineering textbooks) rather than theorems and proofs typically found in textbooks written by mathematicians. Engineering Analysis is uniquely qualified to help apply mathematics to physical applications (spring-mass systems, electrical circuits, conduction, diffusion, etc.), in a manner as efficient and understandable as possible. This book was written to provide for an additional mathematics course after differential equations, to permit several topics to be introduced in one semester, and to make the material comprehensible to undergraduates.The book comes with an Instructor Solutions Manual, available on request, that provides solutions to all problems and also a Student Solutions Manual that provides solutions to select problems (the answers to which are given at the back of the book).