Adsorption of Transition Metal Complexes on Metal Oxide Supports

Adsorption of Transition Metal Complexes on Metal Oxide Supports PDF Author: Ahana Mukhopadhyay
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Widespread industrial applications and large impact of supported late transitionprecious metal catalysts on the global economy serves as the prime motivation for thededication of academic researchers towards focusing on the scalable and affordable design ofefficient catalysts. Catalyst design requires a fundamental understanding of how the differentsynthetic steps (adsorption, drying, pretreatment, etc) influence the properties of the finalcatalyst. Moreover, in current times, single-atom catalysts represent an exciting new class ofmaterials that have demonstrated high activity for chemical reactions relevant to energyproduction. Among the various stages involved in catalyst synthesis, the initial adsorptionstep between the support and the precursor is believed to be of most importance as thisinteraction influences the unit operations that follow and affects the final size distribution ofthe catalyst nanoparticles. The ability of metal oxide supports to enhance the dispersion ofthe active metal on their surface and control their morphology and sintering kinetics isfundamentally related to the nature and strength of the metalsupport interaction which isdetermined at the time of adsorption at the solid-liquid interface. Documented studies on theimportance of the adsorption step on the overall characteristics of the catalyst nanoparticleare limited in recent literature due to challenges associated with probing a buried solid-liquidinterface. In this work, we have examined the molecular level details of catalyst synthesiswith substantial emphasis on the adsorption thermodynamics occurring at the solid-liquidinterface during the initial adsorption of transition metal complexes (TMCs) on metal oxidesupports and its influence on nanoparticle size, growth and stability.Using a number of surface analytical tools, we have probed at the interface during theadsorption process to quantify metal uptake and measure the kinetics and enthalpy of binding in order to identify the effect of different precursors and their ligand chemistry on the electrostatic driving force. Isothermal Titration Calorimetry (ITC) is used to contact reducible and refractory supports like SiO2, -Al2O3 and CeO2 with pH adjusted TMC solutions of Pt, Pd, Rh, Ir and Ag at adjusted pH values, providing a strong electrostatic driving force for adsorption and measure equilibrium binding constants, stoichiometry and enthalpies of adsorption. This study is unique in context that it truly probes the interface during adsorption (in situ) of metal precursors on supports rather than as-synthesized nanoparticles. The trends in the estimated thermodynamic parameters as a function of pH for both the cationic and anionic Pt complexes on silica and alumina respectively captures the effect of ligand speciation and complex solvation at acidic and basic solution conditions. Equilibrium adsorption isotherms from bench top bulk uptake studies aid in quantifying the amount of metal adsorbed on the support surface and by varying choice and weight loading of the precursors, we are able to identify that chloride ligand speciation chemistry around main metal center and solvation strongly influenced metal uptake. Next, we compared bulk and interfacial adsorption mechanisms through ex-situ synthesis to determine how the particle size distribution and metal dispersion of the catalysts were influenced by the mode of adsorption. Thereafter, we looked at cerium oxide which is an important support for transition metal catalysts due to its high oxygen storage capacity; thus allowing it to successfully stabilize noble metals, inhibit sintering and maintain small sized nanoparticles on its surface compared to other oxide supports. The thermodynamic adsorption parameters of a comprehensive list of late transition metal complexes in Group 9-11 on shape controlled faceted cerium oxide nano-crystals demonstrated by ITC and DFT calculations showed a trend in the enthalpies of binding between support and metal precursors that correlates with the oxide formation tendency of the transition metal and the reducibility of the support. The ability of metals to form atomically dispersed metal nanoparticles on cerium oxide through formation of an M-O-Ce bond under strong oxidative conditions was examined using XPS and TEM. Several combinations of catalysts were synthesized using precursors having various ligand chemistries deposited on different facets of cerium oxide nano-crystals and surface analytical tools were used to evaluate the optimal conditions for stable, highly dispersed catalysts. From these design rules, a series of ceria supported low weight loading single atom Pd catalysts were synthesized and examined for low temperature methane combustion that is highly in demand to reduce methane slip from lean-burn natural gas vehicles. Here, we probed into the effect of the transition from nano-clusters to single atoms on the activity of the reaction. A possible mechanistic change in the Pd catalytic redox cycle is believed to enhance the catalytic turnover at low temperatures while maintaining reduced precious metal usage.

Adsorption of Transition Metal Complexes on Metal Oxide Supports

Adsorption of Transition Metal Complexes on Metal Oxide Supports PDF Author: Ahana Mukhopadhyay
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
Widespread industrial applications and large impact of supported late transitionprecious metal catalysts on the global economy serves as the prime motivation for thededication of academic researchers towards focusing on the scalable and affordable design ofefficient catalysts. Catalyst design requires a fundamental understanding of how the differentsynthetic steps (adsorption, drying, pretreatment, etc) influence the properties of the finalcatalyst. Moreover, in current times, single-atom catalysts represent an exciting new class ofmaterials that have demonstrated high activity for chemical reactions relevant to energyproduction. Among the various stages involved in catalyst synthesis, the initial adsorptionstep between the support and the precursor is believed to be of most importance as thisinteraction influences the unit operations that follow and affects the final size distribution ofthe catalyst nanoparticles. The ability of metal oxide supports to enhance the dispersion ofthe active metal on their surface and control their morphology and sintering kinetics isfundamentally related to the nature and strength of the metalsupport interaction which isdetermined at the time of adsorption at the solid-liquid interface. Documented studies on theimportance of the adsorption step on the overall characteristics of the catalyst nanoparticleare limited in recent literature due to challenges associated with probing a buried solid-liquidinterface. In this work, we have examined the molecular level details of catalyst synthesiswith substantial emphasis on the adsorption thermodynamics occurring at the solid-liquidinterface during the initial adsorption of transition metal complexes (TMCs) on metal oxidesupports and its influence on nanoparticle size, growth and stability.Using a number of surface analytical tools, we have probed at the interface during theadsorption process to quantify metal uptake and measure the kinetics and enthalpy of binding in order to identify the effect of different precursors and their ligand chemistry on the electrostatic driving force. Isothermal Titration Calorimetry (ITC) is used to contact reducible and refractory supports like SiO2, -Al2O3 and CeO2 with pH adjusted TMC solutions of Pt, Pd, Rh, Ir and Ag at adjusted pH values, providing a strong electrostatic driving force for adsorption and measure equilibrium binding constants, stoichiometry and enthalpies of adsorption. This study is unique in context that it truly probes the interface during adsorption (in situ) of metal precursors on supports rather than as-synthesized nanoparticles. The trends in the estimated thermodynamic parameters as a function of pH for both the cationic and anionic Pt complexes on silica and alumina respectively captures the effect of ligand speciation and complex solvation at acidic and basic solution conditions. Equilibrium adsorption isotherms from bench top bulk uptake studies aid in quantifying the amount of metal adsorbed on the support surface and by varying choice and weight loading of the precursors, we are able to identify that chloride ligand speciation chemistry around main metal center and solvation strongly influenced metal uptake. Next, we compared bulk and interfacial adsorption mechanisms through ex-situ synthesis to determine how the particle size distribution and metal dispersion of the catalysts were influenced by the mode of adsorption. Thereafter, we looked at cerium oxide which is an important support for transition metal catalysts due to its high oxygen storage capacity; thus allowing it to successfully stabilize noble metals, inhibit sintering and maintain small sized nanoparticles on its surface compared to other oxide supports. The thermodynamic adsorption parameters of a comprehensive list of late transition metal complexes in Group 9-11 on shape controlled faceted cerium oxide nano-crystals demonstrated by ITC and DFT calculations showed a trend in the enthalpies of binding between support and metal precursors that correlates with the oxide formation tendency of the transition metal and the reducibility of the support. The ability of metals to form atomically dispersed metal nanoparticles on cerium oxide through formation of an M-O-Ce bond under strong oxidative conditions was examined using XPS and TEM. Several combinations of catalysts were synthesized using precursors having various ligand chemistries deposited on different facets of cerium oxide nano-crystals and surface analytical tools were used to evaluate the optimal conditions for stable, highly dispersed catalysts. From these design rules, a series of ceria supported low weight loading single atom Pd catalysts were synthesized and examined for low temperature methane combustion that is highly in demand to reduce methane slip from lean-burn natural gas vehicles. Here, we probed into the effect of the transition from nano-clusters to single atoms on the activity of the reaction. A possible mechanistic change in the Pd catalytic redox cycle is believed to enhance the catalytic turnover at low temperatures while maintaining reduced precious metal usage.

Transition Metal Oxides

Transition Metal Oxides PDF Author: H.H. Kung
Publisher: Elsevier
ISBN: 0080887422
Category : Science
Languages : en
Pages : 299

Get Book Here

Book Description
In this book the author presents an up-to-date summary of existing information on the structure, electronic properties, chemistry and catalytic properties of transition metal oxides.The subjects covered in the book can be divided into three sections. The first (chapters 1 to 3) covers the structural, physical, magnetic, and electronic properties of transition metal oxides. Although the emphasis is on surface properties, relevant bulk properties are also discussed. The second section (chapters 4 to 7) covers surface chemical properties. It includes topics that describe the importance of surface coordinative unsaturation in adsorption, the formation of surface acidity and the role of acidity in determining surface chemical properties, the nature and reactivities of adsorbed oxygen, and the surface chemistry in the reduction of oxides. The third section (chapters 8 to 14) is on the catalytic properties. Various catalytic reactions including decomposition, hydrogenation, isomerization, metathesis, selective oxidation, and reactions involving carbon oxides are discussed. Emphasis is placed more on reaction mechanisms and the role of catalysts than on kinetics and processes. Chapters on the preparation of oxide catalysts and on photo-assisted processes are also included. Whenever appropriate, relationships between various topics are indicated.Written for surface physicists, chemists, and catalytic engineers, the book will serve as a useful source of information for investigators and as a comprehensive overview of the subject for graduate students.

Adsorption and Catalysis on Transition Metals and Their Oxides

Adsorption and Catalysis on Transition Metals and Their Oxides PDF Author: Vsevolod F. Kiselev
Publisher: Springer Science & Business Media
ISBN: 3642738877
Category : Technology & Engineering
Languages : en
Pages : 453

Get Book Here

Book Description
This book deals with adsorption and catalysis on the surface of transition elements and their compounds, many of which are in teresting because of their particular electronic structure. The authors have worked through a vast body of experimental evi dence on the structure and properties of surfaces of transition metals and relevant oxides. Consideration is given mostly to simple (as opposed to mixed) oxides of transition elements, to common metals and to the adsorption of simple gases. A great deal of attention is paid to the nature of active surface sites responsible for chemisorption and catalytic transformations. The description relies mainly on the simplified ligand-field theory, which, however, proves quite satisfactory for predicting the adsorptive and catalytic activity of species. In many cases simple systems were explored with the aid of novel techniques, and it is only for such systems that the mechanism of the ele mentary act of adsorption and catalysis can be given adequate treatment. The present monograph has emerged from our earlier work in Russian, which appeared in the Khimiya Publishing House (Mos cow) in 1981. This English edition has, however, been revised completely to broaden its scope and to include more recent a chievements. For fruitful discussions the authors are grateful to A.A.

Reversibility of Adsorption of Metal Complexes on Oxide Supports

Reversibility of Adsorption of Metal Complexes on Oxide Supports PDF Author: Narendra K. Santhanam
Publisher:
ISBN:
Category :
Languages : en
Pages : 112

Get Book Here

Book Description


Tailored Metal Catalysts

Tailored Metal Catalysts PDF Author: Y. Iwasawa
Publisher: Springer Science & Business Media
ISBN: 9400952619
Category : Science
Languages : en
Pages : 343

Get Book Here

Book Description


Kinetics of Heterogeneous Catalytic Reactions

Kinetics of Heterogeneous Catalytic Reactions PDF Author: Michel Boudart
Publisher: Princeton University Press
ISBN: 1400853338
Category : Science
Languages : en
Pages : 241

Get Book Here

Book Description
This book is a critical account of the principles of the kinetics of heterogeneous catalytic reactions in the light of recent developments in surface science and catalysis science. Originally published in 1984. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides

Infrared Spectroscopy of Adsorbed Species on the Surface of Transition Metal Oxides PDF Author: Anatoli Davydov
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 272

Get Book Here

Book Description
Included here is a summary of findings made by the author from infrared investigations of the surface chemistry of simple and complex oxide catalysts. The focus is on spectral characteristics of active sites on oxide surfaces, namely hydroxyl groups, coordinatively unsaturated cations, and surface oxygen. There is a detailed account of the method used for characterizing the oxidation state and coordination of cations on oxide surfaces by the adsorption of probe molecules. In addition, the role played by surface sites in surface-molecule adsorption is used to organize and classify data relating to the interaction of carbon, nitrogen, ammonia, and alkenes with surfaces of transition metal oxides and with supported or mixed oxides containing transition metal cations.

Molecular Spectroscopy of Oxide Catalyst Surfaces

Molecular Spectroscopy of Oxide Catalyst Surfaces PDF Author: Anatoli Davydov
Publisher: John Wiley & Sons
ISBN:
Category : Science
Languages : en
Pages : 706

Get Book Here

Book Description
As in the study of transition metal complexes in solution, molecular spectroscopic methods - principally the infrared, ultraviolet/visible and electron spin resonance spectroscopies - have played key roles in establishing the concepts of coordination chemistry occurring at the surfaces of solids. This book describes the development of the principals of coordination chemistry of oxide surfaces using analyses of data obtained by these methods. The nature, properties, concentration of the surface adsorption centers and their influence on the character of interaction with different molecules are investigated. The book commences with an account of the basic theoretical principles and experimental techniques of the various spectroscopy methods, with special attention devoted to in situ measurements where the oxide or catalyst sample is in contact with the adsorbate or the reactant. A detailed account is presented of the methods for characterizing the oxidation state and degree of coordination of surface cations and oxygen anions by the adsorption of probe molecules. The complexation of many inorganic, organometallic and organic molecules with different oxide systems is critically examined, and a classification of formed surface compounds, based on the interaction with definite type of adsorption centers, is given. Possible mechanisms of numerous catalytic reactions, including the transformation of organic molecules over acidic catalysts via the carboionic mechanism, are discussed using the spectroscopic identifications of reaction intermediates. A comprehensive analysis of the literature on the interpretation of the spectra of surface compounds on oxides is presented. This highly illustrated and extensively referenced volume is intended for specialists working in the fields of surface physical chemistry, surface and materials sciences, and adsorption phenomena and is essential reading for those involved in the heterogeneous catalysis by transition metal-oxides.

Catalysis by Supported Complexes

Catalysis by Supported Complexes PDF Author: I︠U︡riĭ Ivanovich Ermakov
Publisher: Elsevier Health Sciences
ISBN:
Category : Science
Languages : en
Pages : 552

Get Book Here

Book Description


Adsorption and Catalysis on Transition Metals and Their Oxides

Adsorption and Catalysis on Transition Metals and Their Oxides PDF Author: Vsevolod F Kiselev
Publisher:
ISBN: 9783642738883
Category :
Languages : en
Pages : 460

Get Book Here

Book Description