Adiabatic Processes, Noise, and Stochastic Algorithms for Quantum Computing and Quantum Simulation

Adiabatic Processes, Noise, and Stochastic Algorithms for Quantum Computing and Quantum Simulation PDF Author: Guanglei Xu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description

Adiabatic Processes, Noise, and Stochastic Algorithms for Quantum Computing and Quantum Simulation

Adiabatic Processes, Noise, and Stochastic Algorithms for Quantum Computing and Quantum Simulation PDF Author: Guanglei Xu
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Approximability of Optimization Problems through Adiabatic Quantum Computation

Approximability of Optimization Problems through Adiabatic Quantum Computation PDF Author: William Cruz-Santos
Publisher: Springer Nature
ISBN: 3031025199
Category : Mathematics
Languages : en
Pages : 105

Get Book Here

Book Description
The adiabatic quantum computation (AQC) is based on the adiabatic theorem to approximate solutions of the Schrödinger equation. The design of an AQC algorithm involves the construction of a Hamiltonian that describes the behavior of the quantum system. This Hamiltonian is expressed as a linear interpolation of an initial Hamiltonian whose ground state is easy to compute, and a final Hamiltonian whose ground state corresponds to the solution of a given combinatorial optimization problem. The adiabatic theorem asserts that if the time evolution of a quantum system described by a Hamiltonian is large enough, then the system remains close to its ground state. An AQC algorithm uses the adiabatic theorem to approximate the ground state of the final Hamiltonian that corresponds to the solution of the given optimization problem. In this book, we investigate the computational simulation of AQC algorithms applied to the MAX-SAT problem. A symbolic analysis of the AQC solution is given in order to understand the involved computational complexity of AQC algorithms. This approach can be extended to other combinatorial optimization problems and can be used for the classical simulation of an AQC algorithm where a Hamiltonian problem is constructed. This construction requires the computation of a sparse matrix of dimension 2n × 2n, by means of tensor products, where n is the dimension of the quantum system. Also, a general scheme to design AQC algorithms is proposed, based on a natural correspondence between optimization Boolean variables and quantum bits. Combinatorial graph problems are in correspondence with pseudo-Boolean maps that are reduced in polynomial time to quadratic maps. Finally, the relation among NP-hard problems is investigated, as well as its logical representability, and is applied to the design of AQC algorithms. It is shown that every monadic second-order logic (MSOL) expression has associated pseudo-Boolean maps that can be obtained by expanding the given expression, and also can be reduced to quadratic forms. Table of Contents: Preface / Acknowledgments / Introduction / Approximability of NP-hard Problems / Adiabatic Quantum Computing / Efficient Hamiltonian Construction / AQC for Pseudo-Boolean Optimization / A General Strategy to Solve NP-Hard Problems / Conclusions / Bibliography / Authors' Biographies

On Quantum Simulators and Adiabatic Quantum Algorithms

On Quantum Simulators and Adiabatic Quantum Algorithms PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This Thesis focuses on different aspects of quantum computation theory: adiabatic quantum algorithms, decoherence during the adiabatic evolution and quantum simulators. After an overview on the area of quantum computation and setting up the formal ground for the rest of the Thesis we derive a general error estimate for adiabatic quantum computing. We demonstrate that the first-order correction, which has frequently been used as a condition for adiabatic quantum computation, does not yield a good estimate for the computational error. Therefore, a more general criterion is proposed, which includes higher-order corrections and shows that the computational error can be made exponentially small - which facilitates significantly shorter evolution times than the first-order estimate in certain situations. Based on this criterion and rather general arguments and assumptions, it can be demonstrated that a run-time of order of the inverse minimum energy gap is sufficient and necessary. Furthermore, exploiting the similarity between adiabatic quantum algorithms and quantum phase transitions, we study the impact of decoherence on the sweep through a second-order quantum phase transition for the prototypical example of the Ising chain in a transverse field and compare it to the adiabatic version of Grover's search algorithm. It turns out that (in contrast to first-order transitions) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins/qubits), which might limit the scalability of the system. Finally, we propose the use of electron systems to construct laboratory systems based on present-day technology which reproduce and thereby simulate the quantum dynamics of the Ising model and the O(3) nonlinear sigma model.

Quantum Computers, Algorithms, and Chaos

Quantum Computers, Algorithms, and Chaos PDF Author: Giulio Casati
Publisher: IOS Press
ISBN: 9781586036607
Category : Computers
Languages : en
Pages : 650

Get Book Here

Book Description
Quantum Information Processing and Communication (QIPC) has the potential to revolutionize many areas of science and technology. This book covers the following topics: introduction to quantum computing; quantum logic, information and entanglement; quantum algorithms; error-correcting codes for quantum computations; quantum communication; and more."

Molecular Quantum Dynamics

Molecular Quantum Dynamics PDF Author: Fabien Gatti
Publisher: Springer Science & Business Media
ISBN: 3642452906
Category : Science
Languages : en
Pages : 281

Get Book Here

Book Description
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.

Quantum Computer Systems

Quantum Computer Systems PDF Author: Yongshan Ding
Publisher: Springer Nature
ISBN: 303101765X
Category : Technology & Engineering
Languages : en
Pages : 203

Get Book Here

Book Description
This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.

Quantum Computer Science

Quantum Computer Science PDF Author: N. David Mermin
Publisher: Cambridge University Press
ISBN: 1139466801
Category : Science
Languages : en
Pages : 236

Get Book Here

Book Description
In the 1990's it was realized that quantum physics has some spectacular applications in computer science. This book is a concise introduction to quantum computation, developing the basic elements of this new branch of computational theory without assuming any background in physics. It begins with an introduction to the quantum theory from a computer-science perspective. It illustrates the quantum-computational approach with several elementary examples of quantum speed-up, before moving to the major applications: Shor's factoring algorithm, Grover's search algorithm, and quantum error correction. The book is intended primarily for computer scientists who know nothing about quantum theory, but will also be of interest to physicists who want to learn the theory of quantum computation, and philosophers of science interested in quantum foundational issues. It evolved during six years of teaching the subject to undergraduates and graduate students in computer science, mathematics, engineering, and physics, at Cornell University.

On Quantum Simulators and Adiabatic Quantum Algorithms

On Quantum Simulators and Adiabatic Quantum Algorithms PDF Author: Sarah Mostame
Publisher:
ISBN:
Category :
Languages : en
Pages : 108

Get Book Here

Book Description


Adiabatic Quantum Computation and Quantum Annealing

Adiabatic Quantum Computation and Quantum Annealing PDF Author: Catherine C. McGeoch
Publisher: Morgan & Claypool Publishers
ISBN: 1627053360
Category : Science
Languages : en
Pages : 95

Get Book Here

Book Description
Adiabatic quantum computation (AQC) is an alternative to the better-known gate model of quantum computation. The two models are polynomially equivalent, but otherwise quite dissimilar: one property that distinguishes AQC from the gate model is its analog nature. Quantum annealing (QA) describes a type of heuristic search algorithm that can be implemented to run in the ``native instruction set'' of an AQC platform. D-Wave Systems Inc. manufactures {quantum annealing processor chips} that exploit quantum properties to realize QA computations in hardware. The chips form the centerpiece of a novel computing platform designed to solve NP-hard optimization problems. Starting with a 16-qubit prototype announced in 2007, the company has launched and sold increasingly larger models: the 128-qubit D-Wave One system was announced in 2010 and the 512-qubit D-Wave Two system arrived on the scene in 2013. A 1,000-qubit model is expected to be available in 2014. This monograph presents an introductory overview of this unusual and rapidly developing approach to computation. We start with a survey of basic principles of quantum computation and what is known about the AQC model and the QA algorithm paradigm. Next we review the D-Wave technology stack and discuss some challenges to building and using quantum computing systems at a commercial scale. The last chapter reviews some experimental efforts to understand the properties and capabilities of these unusual platforms. The discussion throughout is aimed at an audience of computer scientists with little background in quantum computation or in physics.

The Classical Simulation of Noisy Quantum Computers

The Classical Simulation of Noisy Quantum Computers PDF Author: Nikhil Ratanje
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
In this thesis we explored the consequences of considering generalised non-quantum notions of entanglement in the classical simulation of noisy quantum computers where the available measurements are restricted. Such noise rates serve as upper bounds to fault tolerance thresholds. These measurement restrictions come about either through imperfection, and/or by design to some limited set. By considering sets of operators that return positive measurement outcome probabilities for the restricted measurements, one can construct new single particle state spaces containing quantum and non-quantum operators. These state spaces can then be used with a modified version of Harrow and Nielsen's classical simulation algorithm to efficiently simulate noisy quantum computers that are incapable of generating generalised entanglement with respect to the new state spaces. Through this approach we developed alternative methods of classical simulation, strongly connected to the study of non-local correlations, in that we constructed noisy quantum computers capable of performing non-Clifford operations and could generate some forms of multiparty quantum entanglement, but were classical in that they could be efficiently classically simulated and could not generate non-local statistics. We focused on magic state quantum computers (that are limited to only Pauli measurements), with ideal local gates, but noisy control-Pauli Z gates, and calculated the noise needed to ensure the control-Z gates became incapable of generating generalised entanglment for a variety of noise models and state space choice, with the aim of finding an optimal single particle state space requiring the least noise to remove the generalised entanglement. The state spaces were required to always return valid measurement probabilities, this meant they also had had to have octahedral symmetry to ensure local gates did not take states outside the state space. While we able to find to the optimal choice for highly imperfect measurements, were we unable to find the optimal in all cases. Our best candidate state space required less joint depolarising noise at [approximately equal to] 56% in comparison to noise levels of [approximately equal to] 67% required if the algorithm used quantum notions of separability. This suggests that generalised entanglement may offer more insight than quantum entanglement when discussing the power of Clifford operation based quantum computers.