Action Recognition, Temporal Localization and Detection in Trimmed and Untrimmed Videos

Action Recognition, Temporal Localization and Detection in Trimmed and Untrimmed Videos PDF Author: Rui Hou
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description
Automatic understanding of videos is one of the most active areas of computer vision research. It has applications in video surveillance, human computer interaction, video sports analysis, virtual and augmented reality, video retrieval etc. In this dissertation, we address four important tasks in video understanding, namely action recognition, temporal action localization, spatial-temporal action detection and video object/action segmentation. This dissertation makes contributions to above tasks by proposing. First, for video action recognition, we propose a category level feature learning method. Our proposed method automatically identifies such pairs of categories using a criterion of mutual pairwise proximity in the (kernelized) feature space, and a category-level similarity matrix where each entry corresponds to the one-vs-one SVM margin for pairs of categories. Second, for temporal action localization, we propose to exploit the temporal structure of actions by modeling an action as a sequence of sub-actions and present a computationally efficient approach. Third, we propose 3D Tube Convolutional Neural Network (TCNN) based pipeline for action detection. The proposed architecture is a unified deep network that is able to recognize and localize action based on 3D convolution features. It generalizes the popular faster R-CNN framework from images to videos. Last, an end-to-end encoder-decoder based 3D convolutional neural network pipeline is proposed, which is able to segment out the foreground objects from the background. Moreover, the action label can be obtained as well by passing the foreground object into an action classifier. Extensive experiments on several video datasets demonstrate the superior performance of the proposed approach for video understanding compared to the state-of-the-art.

Action Recognition, Temporal Localization and Detection in Trimmed and Untrimmed Videos

Action Recognition, Temporal Localization and Detection in Trimmed and Untrimmed Videos PDF Author: Rui Hou
Publisher:
ISBN:
Category :
Languages : en
Pages : 107

Get Book Here

Book Description
Automatic understanding of videos is one of the most active areas of computer vision research. It has applications in video surveillance, human computer interaction, video sports analysis, virtual and augmented reality, video retrieval etc. In this dissertation, we address four important tasks in video understanding, namely action recognition, temporal action localization, spatial-temporal action detection and video object/action segmentation. This dissertation makes contributions to above tasks by proposing. First, for video action recognition, we propose a category level feature learning method. Our proposed method automatically identifies such pairs of categories using a criterion of mutual pairwise proximity in the (kernelized) feature space, and a category-level similarity matrix where each entry corresponds to the one-vs-one SVM margin for pairs of categories. Second, for temporal action localization, we propose to exploit the temporal structure of actions by modeling an action as a sequence of sub-actions and present a computationally efficient approach. Third, we propose 3D Tube Convolutional Neural Network (TCNN) based pipeline for action detection. The proposed architecture is a unified deep network that is able to recognize and localize action based on 3D convolution features. It generalizes the popular faster R-CNN framework from images to videos. Last, an end-to-end encoder-decoder based 3D convolutional neural network pipeline is proposed, which is able to segment out the foreground objects from the background. Moreover, the action label can be obtained as well by passing the foreground object into an action classifier. Extensive experiments on several video datasets demonstrate the superior performance of the proposed approach for video understanding compared to the state-of-the-art.

Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks

Temporal Activity Detection in Untrimmed Videos with Recurrent Neural Networks PDF Author: Alberto Montes Gómez
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This thesis explore different approaches using Convolutional and Recurrent Neural Networks to classify and temporally localize activities on videos, furthermore an implementation to achieve it has been proposed. As the first step, features have been extracted from video frames using an state of the art 3D Convolutional Neural Network. This features are fed in a recurrent neural network that solves the activity classification and temporally location tasks in a simple and flexible way. Different architectures and configurations have been tested in order to achieve the best performance and learning of the video dataset provided. In addition it has been studied different kind of post processing over the trained network's output to achieve a better results on the temporally localization of activities on the videos. The results provided by the neural network developed in this thesis have been submitted to the ActivityNet Challenge 2016 of the CVPR, achieving competitive results using a simple and flexible architecture.

Human Action Localization and Recognition in Unconstrained Videos

Human Action Localization and Recognition in Unconstrained Videos PDF Author: Hakan Boyraz
Publisher:
ISBN:
Category :
Languages : en
Pages : 104

Get Book Here

Book Description
As imaging systems become ubiquitous, the ability to recognize human actions is becoming increasingly important. Just as in the object detection and recognition literature, action recognition can be roughly divided into classification tasks, where the goal is to classify a video according to the action depicted in the video, and detection tasks, where the goal is to detect and localize a human performing a particular action. A growing literature is demonstrating the benefits of localizing discriminative sub-regions of images and videos when performing recognition tasks. In this thesis, we address the action detection and recognition problems. Action detection in video is a particularly difficult problem because actions must not only be recognized correctly, but must also be localized in the 3D spatio-temporal volume. We introduce a technique that transforms the 3D localization problem into a series of 2D detection tasks. This is accomplished by dividing the video into overlapping segments, then representing each segment with a 2D video projection. The advantage of the 2D projection is that it makes it convenient to apply the best techniques from object detection to the action detection problem. We also introduce a novel, straightforward method for searching the 2D projections to localize actions, termed Two- Point Subwindow Search (TPSS). Finally, we show how to connect the local detections in time using a chaining algorithm to identify the entire extent of the action. Our experiments show that video projection outperforms the latest results on action detection in a direct comparison.

Computer Vision – ECCV 2022

Computer Vision – ECCV 2022 PDF Author: Shai Avidan
Publisher: Springer Nature
ISBN: 3031197720
Category : Computers
Languages : en
Pages : 801

Get Book Here

Book Description
The 39-volume set, comprising the LNCS books 13661 until 13699, constitutes the refereed proceedings of the 17th European Conference on Computer Vision, ECCV 2022, held in Tel Aviv, Israel, during October 23–27, 2022. The 1645 papers presented in these proceedings were carefully reviewed and selected from a total of 5804 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Computer Vision – ECCV 2020

Computer Vision – ECCV 2020 PDF Author: Andrea Vedaldi
Publisher: Springer Nature
ISBN: 3030585956
Category : Computers
Languages : en
Pages : 830

Get Book Here

Book Description
The 30-volume set, comprising the LNCS books 12346 until 12375, constitutes the refereed proceedings of the 16th European Conference on Computer Vision, ECCV 2020, which was planned to be held in Glasgow, UK, during August 23-28, 2020. The conference was held virtually due to the COVID-19 pandemic. The 1360 revised papers presented in these proceedings were carefully reviewed and selected from a total of 5025 submissions. The papers deal with topics such as computer vision; machine learning; deep neural networks; reinforcement learning; object recognition; image classification; image processing; object detection; semantic segmentation; human pose estimation; 3d reconstruction; stereo vision; computational photography; neural networks; image coding; image reconstruction; object recognition; motion estimation.

Computer Vision – ECCV 2018

Computer Vision – ECCV 2018 PDF Author: Vittorio Ferrari
Publisher: Springer
ISBN: 3030012166
Category : Computers
Languages : en
Pages : 810

Get Book Here

Book Description
The sixteen-volume set comprising the LNCS volumes 11205-11220 constitutes the refereed proceedings of the 15th European Conference on Computer Vision, ECCV 2018, held in Munich, Germany, in September 2018.The 776 revised papers presented were carefully reviewed and selected from 2439 submissions. The papers are organized in topical sections on learning for vision; computational photography; human analysis; human sensing; stereo and reconstruction; optimization; matching and recognition; video attention; and poster sessions.

Modern Computer Vision with PyTorch

Modern Computer Vision with PyTorch PDF Author: V Kishore Ayyadevara
Publisher: Packt Publishing Ltd
ISBN: 1803240938
Category : Computers
Languages : en
Pages : 747

Get Book Here

Book Description
The definitive computer vision book is back, featuring the latest neural network architectures and an exploration of foundation and diffusion models Purchase of the print or Kindle book includes a free eBook in PDF format Key Features Understand the inner workings of various neural network architectures and their implementation, including image classification, object detection, segmentation, generative adversarial networks, transformers, and diffusion models Build solutions for real-world computer vision problems using PyTorch All the code files are available on GitHub and can be run on Google Colab Book DescriptionWhether you are a beginner or are looking to progress in your computer vision career, this book guides you through the fundamentals of neural networks (NNs) and PyTorch and how to implement state-of-the-art architectures for real-world tasks. The second edition of Modern Computer Vision with PyTorch is fully updated to explain and provide practical examples of the latest multimodal models, CLIP, and Stable Diffusion. You’ll discover best practices for working with images, tweaking hyperparameters, and moving models into production. As you progress, you'll implement various use cases for facial keypoint recognition, multi-object detection, segmentation, and human pose detection. This book provides a solid foundation in image generation as you explore different GAN architectures. You’ll leverage transformer-based architectures like ViT, TrOCR, BLIP2, and LayoutLM to perform various real-world tasks and build a diffusion model from scratch. Additionally, you’ll utilize foundation models' capabilities to perform zero-shot object detection and image segmentation. Finally, you’ll learn best practices for deploying a model to production. By the end of this deep learning book, you'll confidently leverage modern NN architectures to solve real-world computer vision problems.What you will learn Get to grips with various transformer-based architectures for computer vision, CLIP, Segment-Anything, and Stable Diffusion, and test their applications, such as in-painting and pose transfer Combine CV with NLP to perform OCR, key-value extraction from document images, visual question-answering, and generative AI tasks Implement multi-object detection and segmentation Leverage foundation models to perform object detection and segmentation without any training data points Learn best practices for moving a model to production Who this book is for This book is for beginners to PyTorch and intermediate-level machine learning practitioners who want to learn computer vision techniques using deep learning and PyTorch. It's useful for those just getting started with neural networks, as it will enable readers to learn from real-world use cases accompanied by notebooks on GitHub. Basic knowledge of the Python programming language and ML is all you need to get started with this book. For more experienced computer vision scientists, this book takes you through more advanced models in the latter part of the book.

Deep Learning for Video Understanding

Deep Learning for Video Understanding PDF Author: Zuxuan Wu
Publisher: Springer Nature
ISBN: 3031576799
Category :
Languages : en
Pages : 194

Get Book Here

Book Description


MultiMedia Modeling

MultiMedia Modeling PDF Author: Yong Man Ro
Publisher: Springer Nature
ISBN: 3030377318
Category : Computers
Languages : en
Pages : 860

Get Book Here

Book Description
The two-volume set LNCS 11961 and 11962 constitutes the thoroughly refereed proceedings of the 25th International Conference on MultiMedia Modeling, MMM 2020, held in Daejeon, South Korea, in January 2020. Of the 171 submitted full research papers, 40 papers were selected for oral presentation and 46 for poster presentation; 28 special session papers were selected for oral presentation and 8 for poster presentation; in addition, 9 demonstration papers and 6 papers for the Video Browser Showdown 2020 were accepted. The papers of LNCS 11961 are organized in the following topical sections: audio and signal processing; coding and HVS; color processing and art; detection and classification; face; image processing; learning and knowledge representation; video processing; poster papers; the papers of LNCS 11962 are organized in the following topical sections: poster papers; AI-powered 3D vision; multimedia analytics: perspectives, tools and applications; multimedia datasets for repeatable experimentation; multi-modal affective computing of large-scale multimedia data; multimedia and multimodal analytics in the medical domain and pervasive environments; intelligent multimedia security; demo papers; and VBS papers.

Active Learning of an Action Detector on Untrimmed Videos

Active Learning of an Action Detector on Untrimmed Videos PDF Author: Sunil Bandla
Publisher:
ISBN:
Category :
Languages : en
Pages : 66

Get Book Here

Book Description
Collecting and annotating videos of realistic human actions is tedious, yet critical for training action recognition systems. We propose a method to actively request the most useful video annotations among a large set of unlabeled videos. Predicting the utility of annotating unlabeled video is not trivial, since any given clip may contain multiple actions of interest, and it need not be trimmed to temporal regions of interest. To deal with this problem, we propose a detection-based active learner to train action category models. We develop a voting-based framework to localize likely intervals of interest in an unlabeled clip, and use them to estimate the total reduction in uncertainty that annotating that clip would yield. On three datasets, we show our approach can learn accurate action detectors more efficiently than alternative active learning strategies that fail to accommodate the "untrimmed" nature of real video data.