Author: Silva, E. I. L.
Publisher: IWMI
ISBN: 9290907789
Category : Nature
Languages : en
Pages : 126
Book Description
Sri Lanka, an island in the Indian Ocean, has lagoons along 1,338 km of its coastline. They experience low-energy oceanic waves and semidiurnal microtidal currents. The Sri Lankan coastal lagoons are not numerous but they are diverse in size, shape, configuration, ecohydrology, and ecosystem values and services. The heterogeneous nature, in general, and specific complexities, to a certain extent, exhibited by coastal lagoons in Sri Lanka are fundamentally determined by coastal and adjoining hinterland geomorphology, tidal fluxes and fluvial inputs, monsoonal-driven climate and weather, morphoedaphic attributes, and cohesive interactions with human interventions.Most coastal lagoons in Sri Lanka are an outcome of mid-Holocene marine transgression and subsequent barrier formation and spit development enclosing the water body between the land and the sea. This process has varied from one coastal stretch to another due to wave-derived littoral drift, sediment transport by tidal fluxes, fluvial inputs and wave action or, in other words, sea-level history, shore-face dynamics and tidal range as the three major factors that control the origin and maintenance of the sandy barrier, the most important features for the formation and evolution of coastal lagoons with their landward water mass. In certain stretches of Sri Lanka’s coastline, formation of the barrier spit was very active due to shore-face dynamics that resulted in chains of shore parallel, elongated lagoons. They are among the most productive in terms of ecosystem yield and show some similarities to large tropical lagoons with respect to sea entrance, zonation, biodiversity and ecosystem services. However, some of them become seasonally hypersaline due to lack of freshwater input and high evaporation. Functions and processes of some of these water bodies are fairly known. There are a fair number of small back-barrier lagoons of different shapes and sizes whose origin goes back to sea-level history. They are located on low-energy coasts with prominent beach ridges and restricted hinterland geomorphology. Mixing processes of these landward indentations are hindered by elevated sand dunes, and their salinity increases due to poor freshwater input and high evaporation leading to seasonally hypersaline conditions. These sedimented lagoons, primarily confined to the southeastern coast of the island, are biologically the least productive, with limited ecosystem values and services. Another group of moderately elongated semicircular, slightly large lagoons in the same coast, formed exclusively by submergence due to mid-Holocene sea-level rises, do not receive sufficient freshwater input leading to seasonally hypersaline conditions. They are also biologically unproductive but some are ecologically important since they provide habitats conducive to migratory birds. In contrast, some lagoons on the southern coast receive sufficient freshwater via streams draining the wet zone, maintain more estuarine salinities, exhibit rich biodiversity and serve as functional resource units. Lagoons formed by mid-Holocene submergence and recession of water level with simultaneous chain barrier formation on the high energy southwest coast, which includes cliffs, small bays and headlands, show peculiar configurations and link channel characteristics. Some of these irregular water bodies have clusters of small isles and luxuriant mangrove swamps with high biodiversity but not very rich in catadromous finfish and shellfish species due to the restricted nature of the entrance channel and nondistinct salinity gradients. The barrier-built, seasonally hypersaline lagoon complex in the Jaffna Peninsula, the largest lagoon system in the country with multiple perennial entrances show extremely narrow salinity ranges towards the upper limit of salinity. The main lagoon is elongated and the shore parallel to eastward and southward extensions is connected by narrow channels. The other lagoon in the Jaffna Peninsula is elongated, shore parallel and ribbon-shaped and receives tidal water throughout the year but freshwater is received only from precipitation and surface runoff. Even though the lagoons in the peninsula are extremely rich in ecosystem heterogeneity their hydrology and hydrodynamics have been severely disturbed by infrastructural development for transportation and by attempts to create a freshwater river for Jaffna. There are a few virgin lagoons of moderate size also on the northern coast, south of the Jaffna Peninsula on both the east and west sides. They look very typical tropical lagoons rich in biodiversity and biological production but their structure, functions and values are virtually unknown in scientific or socioeconomic terms. The lagoons located on the east coast are not numerous but relatively large in extent. They are also an outcome not only of mid-Holocene sea-level rises but of submerged multi-delta valleys or abandoned paleo estuaries. When inundated, the multi-delta valley configuration became elongated and is shore parallel with a smooth seaward shoreline; both shorelines become irregular when coastal waves are weak, and internal waves are created by the action of local winds. Configuration of a lagoon formed by inundation of an abandoned river valley is irregular with a long entrance channel extended landward. These lagoons are highly productive with a variety of associated ecosystems, large open water areas and wide perennial sea entrances. When the lagoon is too much elongated, zonation is prominent due to fewer entrance effects. Lagoons form a particular type of natural capital which generates use values (fish, shrimp, fuelwood, salt, fodder, ecotourism, anchorage, recreation, etc.) and nonuse values (habitat preservation, biodiversity, ecosystem linkages, etc.) contributing positively towards improving the human well-being. Of many values of lagoons in Sri Lanka, only the extractive values are generally utilized at present, by way of fish and shrimp catches, salt production and use of mangrove for various purposes. Besides, coastal lagoons generate a range of nonextractive use values and nonuse values, which could add towards the total economic value. Misuse has taken place at several instances when “use” adversely affects the status of the resources or the health of the ecosystem due to vulnerability and poverty, population pressure, urbanization, development activities and multi-stakeholder issues. The status of lagoon resources shows that the resources in the majority of Sri Lankan lagoons still remain satisfactory, somewhat good or very good. Nevertheless, concerns for management of lagoons in Sri Lanka exist only where “use values” (extractive values, such as fish and shrimp) exist. There is no evidence of resources management in lagoons for inspirational, scholarly values or tacit knowledge of the same. Management for use values exhibits several stages from zero management to comanagement via community management and state intervention. Most of Sri Lanka’s lagoons have the potential for generating high extractive and nonextractive use values which could improve the human well-being, while maintaining resources sustainability. Unfortunately, these potentials have not been understood or “seen” yet by the relevant authorities, although a few instances of exploring this potential were noticed.
Lagoons of Sri Lanka
Author: Silva, E. I. L.
Publisher: IWMI
ISBN: 9290907789
Category : Nature
Languages : en
Pages : 126
Book Description
Sri Lanka, an island in the Indian Ocean, has lagoons along 1,338 km of its coastline. They experience low-energy oceanic waves and semidiurnal microtidal currents. The Sri Lankan coastal lagoons are not numerous but they are diverse in size, shape, configuration, ecohydrology, and ecosystem values and services. The heterogeneous nature, in general, and specific complexities, to a certain extent, exhibited by coastal lagoons in Sri Lanka are fundamentally determined by coastal and adjoining hinterland geomorphology, tidal fluxes and fluvial inputs, monsoonal-driven climate and weather, morphoedaphic attributes, and cohesive interactions with human interventions.Most coastal lagoons in Sri Lanka are an outcome of mid-Holocene marine transgression and subsequent barrier formation and spit development enclosing the water body between the land and the sea. This process has varied from one coastal stretch to another due to wave-derived littoral drift, sediment transport by tidal fluxes, fluvial inputs and wave action or, in other words, sea-level history, shore-face dynamics and tidal range as the three major factors that control the origin and maintenance of the sandy barrier, the most important features for the formation and evolution of coastal lagoons with their landward water mass. In certain stretches of Sri Lanka’s coastline, formation of the barrier spit was very active due to shore-face dynamics that resulted in chains of shore parallel, elongated lagoons. They are among the most productive in terms of ecosystem yield and show some similarities to large tropical lagoons with respect to sea entrance, zonation, biodiversity and ecosystem services. However, some of them become seasonally hypersaline due to lack of freshwater input and high evaporation. Functions and processes of some of these water bodies are fairly known. There are a fair number of small back-barrier lagoons of different shapes and sizes whose origin goes back to sea-level history. They are located on low-energy coasts with prominent beach ridges and restricted hinterland geomorphology. Mixing processes of these landward indentations are hindered by elevated sand dunes, and their salinity increases due to poor freshwater input and high evaporation leading to seasonally hypersaline conditions. These sedimented lagoons, primarily confined to the southeastern coast of the island, are biologically the least productive, with limited ecosystem values and services. Another group of moderately elongated semicircular, slightly large lagoons in the same coast, formed exclusively by submergence due to mid-Holocene sea-level rises, do not receive sufficient freshwater input leading to seasonally hypersaline conditions. They are also biologically unproductive but some are ecologically important since they provide habitats conducive to migratory birds. In contrast, some lagoons on the southern coast receive sufficient freshwater via streams draining the wet zone, maintain more estuarine salinities, exhibit rich biodiversity and serve as functional resource units. Lagoons formed by mid-Holocene submergence and recession of water level with simultaneous chain barrier formation on the high energy southwest coast, which includes cliffs, small bays and headlands, show peculiar configurations and link channel characteristics. Some of these irregular water bodies have clusters of small isles and luxuriant mangrove swamps with high biodiversity but not very rich in catadromous finfish and shellfish species due to the restricted nature of the entrance channel and nondistinct salinity gradients. The barrier-built, seasonally hypersaline lagoon complex in the Jaffna Peninsula, the largest lagoon system in the country with multiple perennial entrances show extremely narrow salinity ranges towards the upper limit of salinity. The main lagoon is elongated and the shore parallel to eastward and southward extensions is connected by narrow channels. The other lagoon in the Jaffna Peninsula is elongated, shore parallel and ribbon-shaped and receives tidal water throughout the year but freshwater is received only from precipitation and surface runoff. Even though the lagoons in the peninsula are extremely rich in ecosystem heterogeneity their hydrology and hydrodynamics have been severely disturbed by infrastructural development for transportation and by attempts to create a freshwater river for Jaffna. There are a few virgin lagoons of moderate size also on the northern coast, south of the Jaffna Peninsula on both the east and west sides. They look very typical tropical lagoons rich in biodiversity and biological production but their structure, functions and values are virtually unknown in scientific or socioeconomic terms. The lagoons located on the east coast are not numerous but relatively large in extent. They are also an outcome not only of mid-Holocene sea-level rises but of submerged multi-delta valleys or abandoned paleo estuaries. When inundated, the multi-delta valley configuration became elongated and is shore parallel with a smooth seaward shoreline; both shorelines become irregular when coastal waves are weak, and internal waves are created by the action of local winds. Configuration of a lagoon formed by inundation of an abandoned river valley is irregular with a long entrance channel extended landward. These lagoons are highly productive with a variety of associated ecosystems, large open water areas and wide perennial sea entrances. When the lagoon is too much elongated, zonation is prominent due to fewer entrance effects. Lagoons form a particular type of natural capital which generates use values (fish, shrimp, fuelwood, salt, fodder, ecotourism, anchorage, recreation, etc.) and nonuse values (habitat preservation, biodiversity, ecosystem linkages, etc.) contributing positively towards improving the human well-being. Of many values of lagoons in Sri Lanka, only the extractive values are generally utilized at present, by way of fish and shrimp catches, salt production and use of mangrove for various purposes. Besides, coastal lagoons generate a range of nonextractive use values and nonuse values, which could add towards the total economic value. Misuse has taken place at several instances when “use” adversely affects the status of the resources or the health of the ecosystem due to vulnerability and poverty, population pressure, urbanization, development activities and multi-stakeholder issues. The status of lagoon resources shows that the resources in the majority of Sri Lankan lagoons still remain satisfactory, somewhat good or very good. Nevertheless, concerns for management of lagoons in Sri Lanka exist only where “use values” (extractive values, such as fish and shrimp) exist. There is no evidence of resources management in lagoons for inspirational, scholarly values or tacit knowledge of the same. Management for use values exhibits several stages from zero management to comanagement via community management and state intervention. Most of Sri Lanka’s lagoons have the potential for generating high extractive and nonextractive use values which could improve the human well-being, while maintaining resources sustainability. Unfortunately, these potentials have not been understood or “seen” yet by the relevant authorities, although a few instances of exploring this potential were noticed.
Publisher: IWMI
ISBN: 9290907789
Category : Nature
Languages : en
Pages : 126
Book Description
Sri Lanka, an island in the Indian Ocean, has lagoons along 1,338 km of its coastline. They experience low-energy oceanic waves and semidiurnal microtidal currents. The Sri Lankan coastal lagoons are not numerous but they are diverse in size, shape, configuration, ecohydrology, and ecosystem values and services. The heterogeneous nature, in general, and specific complexities, to a certain extent, exhibited by coastal lagoons in Sri Lanka are fundamentally determined by coastal and adjoining hinterland geomorphology, tidal fluxes and fluvial inputs, monsoonal-driven climate and weather, morphoedaphic attributes, and cohesive interactions with human interventions.Most coastal lagoons in Sri Lanka are an outcome of mid-Holocene marine transgression and subsequent barrier formation and spit development enclosing the water body between the land and the sea. This process has varied from one coastal stretch to another due to wave-derived littoral drift, sediment transport by tidal fluxes, fluvial inputs and wave action or, in other words, sea-level history, shore-face dynamics and tidal range as the three major factors that control the origin and maintenance of the sandy barrier, the most important features for the formation and evolution of coastal lagoons with their landward water mass. In certain stretches of Sri Lanka’s coastline, formation of the barrier spit was very active due to shore-face dynamics that resulted in chains of shore parallel, elongated lagoons. They are among the most productive in terms of ecosystem yield and show some similarities to large tropical lagoons with respect to sea entrance, zonation, biodiversity and ecosystem services. However, some of them become seasonally hypersaline due to lack of freshwater input and high evaporation. Functions and processes of some of these water bodies are fairly known. There are a fair number of small back-barrier lagoons of different shapes and sizes whose origin goes back to sea-level history. They are located on low-energy coasts with prominent beach ridges and restricted hinterland geomorphology. Mixing processes of these landward indentations are hindered by elevated sand dunes, and their salinity increases due to poor freshwater input and high evaporation leading to seasonally hypersaline conditions. These sedimented lagoons, primarily confined to the southeastern coast of the island, are biologically the least productive, with limited ecosystem values and services. Another group of moderately elongated semicircular, slightly large lagoons in the same coast, formed exclusively by submergence due to mid-Holocene sea-level rises, do not receive sufficient freshwater input leading to seasonally hypersaline conditions. They are also biologically unproductive but some are ecologically important since they provide habitats conducive to migratory birds. In contrast, some lagoons on the southern coast receive sufficient freshwater via streams draining the wet zone, maintain more estuarine salinities, exhibit rich biodiversity and serve as functional resource units. Lagoons formed by mid-Holocene submergence and recession of water level with simultaneous chain barrier formation on the high energy southwest coast, which includes cliffs, small bays and headlands, show peculiar configurations and link channel characteristics. Some of these irregular water bodies have clusters of small isles and luxuriant mangrove swamps with high biodiversity but not very rich in catadromous finfish and shellfish species due to the restricted nature of the entrance channel and nondistinct salinity gradients. The barrier-built, seasonally hypersaline lagoon complex in the Jaffna Peninsula, the largest lagoon system in the country with multiple perennial entrances show extremely narrow salinity ranges towards the upper limit of salinity. The main lagoon is elongated and the shore parallel to eastward and southward extensions is connected by narrow channels. The other lagoon in the Jaffna Peninsula is elongated, shore parallel and ribbon-shaped and receives tidal water throughout the year but freshwater is received only from precipitation and surface runoff. Even though the lagoons in the peninsula are extremely rich in ecosystem heterogeneity their hydrology and hydrodynamics have been severely disturbed by infrastructural development for transportation and by attempts to create a freshwater river for Jaffna. There are a few virgin lagoons of moderate size also on the northern coast, south of the Jaffna Peninsula on both the east and west sides. They look very typical tropical lagoons rich in biodiversity and biological production but their structure, functions and values are virtually unknown in scientific or socioeconomic terms. The lagoons located on the east coast are not numerous but relatively large in extent. They are also an outcome not only of mid-Holocene sea-level rises but of submerged multi-delta valleys or abandoned paleo estuaries. When inundated, the multi-delta valley configuration became elongated and is shore parallel with a smooth seaward shoreline; both shorelines become irregular when coastal waves are weak, and internal waves are created by the action of local winds. Configuration of a lagoon formed by inundation of an abandoned river valley is irregular with a long entrance channel extended landward. These lagoons are highly productive with a variety of associated ecosystems, large open water areas and wide perennial sea entrances. When the lagoon is too much elongated, zonation is prominent due to fewer entrance effects. Lagoons form a particular type of natural capital which generates use values (fish, shrimp, fuelwood, salt, fodder, ecotourism, anchorage, recreation, etc.) and nonuse values (habitat preservation, biodiversity, ecosystem linkages, etc.) contributing positively towards improving the human well-being. Of many values of lagoons in Sri Lanka, only the extractive values are generally utilized at present, by way of fish and shrimp catches, salt production and use of mangrove for various purposes. Besides, coastal lagoons generate a range of nonextractive use values and nonuse values, which could add towards the total economic value. Misuse has taken place at several instances when “use” adversely affects the status of the resources or the health of the ecosystem due to vulnerability and poverty, population pressure, urbanization, development activities and multi-stakeholder issues. The status of lagoon resources shows that the resources in the majority of Sri Lankan lagoons still remain satisfactory, somewhat good or very good. Nevertheless, concerns for management of lagoons in Sri Lanka exist only where “use values” (extractive values, such as fish and shrimp) exist. There is no evidence of resources management in lagoons for inspirational, scholarly values or tacit knowledge of the same. Management for use values exhibits several stages from zero management to comanagement via community management and state intervention. Most of Sri Lanka’s lagoons have the potential for generating high extractive and nonextractive use values which could improve the human well-being, while maintaining resources sustainability. Unfortunately, these potentials have not been understood or “seen” yet by the relevant authorities, although a few instances of exploring this potential were noticed.
Lizards of Sri Lanka
Author: Ruchira Somaweera
Publisher:
ISBN: 9783899734782
Category : Lizards
Languages : en
Pages : 303
Book Description
Publisher:
ISBN: 9783899734782
Category : Lizards
Languages : en
Pages : 303
Book Description
Annual Report
Author: Maine. Banking Department
Publisher:
ISBN:
Category : Banks and banking
Languages : en
Pages : 412
Book Description
Publisher:
ISBN:
Category : Banks and banking
Languages : en
Pages : 412
Book Description
Sri Lanka's Middle Path to Sustainable Development in the 21st Century
Author:
Publisher:
ISBN:
Category : Economic development
Languages : en
Pages : 116
Book Description
Publisher:
ISBN:
Category : Economic development
Languages : en
Pages : 116
Book Description
Regulatory Mechanisms in Insect Feeding
Author: Reg F. Chapman
Publisher: Springer Science & Business Media
ISBN: 1461517753
Category : Science
Languages : en
Pages : 415
Book Description
The only book to deal comprehensively with insect feeding was published by C. T. Brues in 1946. His Insect Dietary was an account of insect feeding habits. Since that time there has been a revolution in biology, and almost all aspects of our understanding of insect feeding have expanded to an extent and into areas that would have been unthinkable in Brues' day. Yet, our book does not replace Insect Dietary but, instead, complements it, because our aim is to bring together information on the mechanisms by which food quality and quantity are regulated. We deliberately focus attention on the feeding process; to include food-finding would have required a much larger book and would have moved the focus away from more proximate mechanisms. This book is dedicated to the late Vincent G. Dethier. As a pioneer in studying the physiological basis of animal behavior, he focused on regulation of feeding in flies and caterpillars. His work on the blowfly, together with that by his many students and co-workers, still provides the most completely described mechanism of insect feeding. The citation of his work in almost every chapter in this book illustrates the importance of his findings and ideas to our current understanding of regulation of insect feeding. The authors in this book provide many innovative and stimulating ideas typifying Dethier's approach to the study of feeding be havior.
Publisher: Springer Science & Business Media
ISBN: 1461517753
Category : Science
Languages : en
Pages : 415
Book Description
The only book to deal comprehensively with insect feeding was published by C. T. Brues in 1946. His Insect Dietary was an account of insect feeding habits. Since that time there has been a revolution in biology, and almost all aspects of our understanding of insect feeding have expanded to an extent and into areas that would have been unthinkable in Brues' day. Yet, our book does not replace Insect Dietary but, instead, complements it, because our aim is to bring together information on the mechanisms by which food quality and quantity are regulated. We deliberately focus attention on the feeding process; to include food-finding would have required a much larger book and would have moved the focus away from more proximate mechanisms. This book is dedicated to the late Vincent G. Dethier. As a pioneer in studying the physiological basis of animal behavior, he focused on regulation of feeding in flies and caterpillars. His work on the blowfly, together with that by his many students and co-workers, still provides the most completely described mechanism of insect feeding. The citation of his work in almost every chapter in this book illustrates the importance of his findings and ideas to our current understanding of regulation of insect feeding. The authors in this book provide many innovative and stimulating ideas typifying Dethier's approach to the study of feeding be havior.
Practicing Sustainability
Author: Guru Madhavan
Publisher: Springer Science & Business Media
ISBN: 1461443490
Category : Science
Languages : en
Pages : 265
Book Description
Sustainability applies to everybody. But everybody applies it differently, by defining and shaping it differently—much as water is edged and shaped by its container. It is conceived in absolute terms but underpinned by a great diversity of relatively “green”—and sometimes contradictory—practices that can each make society only more or less sustainable. In Practicing Sustainability, chefs, poets, music directors, evangelical pastors, skyscraper architects, artists, filmmakers, as well as scientific leaders, entrepreneurs, educators, business executives, policy makers, and the contrarians, shed light on our understanding of sustainability and the role that each of us can play. Each contributor addresses what sustainability means, what is most appealing about the concept, and what they would like to change to improve the perception and practice of sustainability. What emerges from their essays is a wide spectrum of views that confirm an important insight: Sustainability is pursued in different ways not only due to different interpretations, but also because of varying incentives, trade-offs, and altruistic motives. Practicing and achieving sustainability starts with a willingness to look critically at the concept. It also means enabling rich and vigorous discussion based on pragmatism and common sense to determine a framework for best ideas and practices. With time and the much needed critical thinking, sustainable development will become a more integral part of our culture. By sharing experiences and crisp insights from today’s savants, Practicing Sustainability serves as a stepping stone to the future.
Publisher: Springer Science & Business Media
ISBN: 1461443490
Category : Science
Languages : en
Pages : 265
Book Description
Sustainability applies to everybody. But everybody applies it differently, by defining and shaping it differently—much as water is edged and shaped by its container. It is conceived in absolute terms but underpinned by a great diversity of relatively “green”—and sometimes contradictory—practices that can each make society only more or less sustainable. In Practicing Sustainability, chefs, poets, music directors, evangelical pastors, skyscraper architects, artists, filmmakers, as well as scientific leaders, entrepreneurs, educators, business executives, policy makers, and the contrarians, shed light on our understanding of sustainability and the role that each of us can play. Each contributor addresses what sustainability means, what is most appealing about the concept, and what they would like to change to improve the perception and practice of sustainability. What emerges from their essays is a wide spectrum of views that confirm an important insight: Sustainability is pursued in different ways not only due to different interpretations, but also because of varying incentives, trade-offs, and altruistic motives. Practicing and achieving sustainability starts with a willingness to look critically at the concept. It also means enabling rich and vigorous discussion based on pragmatism and common sense to determine a framework for best ideas and practices. With time and the much needed critical thinking, sustainable development will become a more integral part of our culture. By sharing experiences and crisp insights from today’s savants, Practicing Sustainability serves as a stepping stone to the future.
Heads, Jaws, and Muscles
Author: Janine M. Ziermann
Publisher: Springer
ISBN: 3319935607
Category : Science
Languages : en
Pages : 313
Book Description
The vertebrate head is the most complex part of the animal body and its diversity in nature reflects a variety of life styles, feeding modes, and ecological adaptations. This book will take you on a journey to discover the origin and diversification of the head, which evolved from a seemingly headless chordate ancestor. Despite their structural diversity, heads develop in a highly conserved fashion in embryos. Major sensory organs like the eyes, ears, nose, and brain develop in close association with surrounding tissues such as bones, cartilages, muscles, nerves, and blood vessels. Ultimately, this integrated unit of tissues gives rise to the complex functionality of the musculoskeletal system as a result of sensory and neural feedback, most notably in the use of the vertebrate jaws, a major vertebrate innovation only lacking in hagfishes and lampreys. The cranium subsequently further diversified during the major transition from fishes living in an aquatic environment to tetrapods living mostly on land. In this book, experts will join forces to integrate, for the first time, state-of-the-art knowledge on the anatomy, development, function, diversity, and evolution of the head and jaws and their muscles within all major groups of extant vertebrates. Considerations about and comparisons with fossil taxa, including emblematic groups such as the dinosaurs, are also provided in this landmark book, which will be a leading reference for many years to come.
Publisher: Springer
ISBN: 3319935607
Category : Science
Languages : en
Pages : 313
Book Description
The vertebrate head is the most complex part of the animal body and its diversity in nature reflects a variety of life styles, feeding modes, and ecological adaptations. This book will take you on a journey to discover the origin and diversification of the head, which evolved from a seemingly headless chordate ancestor. Despite their structural diversity, heads develop in a highly conserved fashion in embryos. Major sensory organs like the eyes, ears, nose, and brain develop in close association with surrounding tissues such as bones, cartilages, muscles, nerves, and blood vessels. Ultimately, this integrated unit of tissues gives rise to the complex functionality of the musculoskeletal system as a result of sensory and neural feedback, most notably in the use of the vertebrate jaws, a major vertebrate innovation only lacking in hagfishes and lampreys. The cranium subsequently further diversified during the major transition from fishes living in an aquatic environment to tetrapods living mostly on land. In this book, experts will join forces to integrate, for the first time, state-of-the-art knowledge on the anatomy, development, function, diversity, and evolution of the head and jaws and their muscles within all major groups of extant vertebrates. Considerations about and comparisons with fossil taxa, including emblematic groups such as the dinosaurs, are also provided in this landmark book, which will be a leading reference for many years to come.
Sustainable Utilization of Natural Resources
Author: Prasenjit Mondal
Publisher: CRC Press
ISBN: 1498761844
Category : Nature
Languages : en
Pages : 624
Book Description
Increased research is going on to explore the new cleaner options for the utilization of natural resources. This book aims to provide the scientific knowhow and orientation in the area of the emerging technologies for utilization of natural resources for sustainable development to the readers. The book includes production of energy and lifesaving drugs using natural resources as well as reduction of wastage of resources like water and energy for sustainable development in both technological as well as modeling aspects.
Publisher: CRC Press
ISBN: 1498761844
Category : Nature
Languages : en
Pages : 624
Book Description
Increased research is going on to explore the new cleaner options for the utilization of natural resources. This book aims to provide the scientific knowhow and orientation in the area of the emerging technologies for utilization of natural resources for sustainable development to the readers. The book includes production of energy and lifesaving drugs using natural resources as well as reduction of wastage of resources like water and energy for sustainable development in both technological as well as modeling aspects.
Western Province Biodiversity Profile and Conservation Action Plan
Author: Channa N. B. Bambaradeniya
Publisher:
ISBN: 9789550033041
Category :
Languages : en
Pages : 78
Book Description
With reference to Sri Lanka.
Publisher:
ISBN: 9789550033041
Category :
Languages : en
Pages : 78
Book Description
With reference to Sri Lanka.
Traffic and Environment
Author: W. Berg
Publisher: Springer Science & Business Media
ISBN: 9783540000501
Category : Medical
Languages : en
Pages : 316
Book Description
The automobile is one of the inventions that have made a decisive contribution to human mobility, and consequently it has become an inseparable part of modern human society. However, it is through this widespread use that its negative impacts on the environment have become so highly visible. Achievements in improving the ecological characteristics of the automobile are highly impressive: a modern car emits only a fraction of the amounts of noise and exhaust pollutants produced by its predecessors 30 years ago. The contributions to this book were written by experts, most of whom have been actively involved in the development of modern automobiles and their combustion engines for more than 30 years. They have participated in all phases of the ecological development of the automobile and summarize their experience and know-how in this book .
Publisher: Springer Science & Business Media
ISBN: 9783540000501
Category : Medical
Languages : en
Pages : 316
Book Description
The automobile is one of the inventions that have made a decisive contribution to human mobility, and consequently it has become an inseparable part of modern human society. However, it is through this widespread use that its negative impacts on the environment have become so highly visible. Achievements in improving the ecological characteristics of the automobile are highly impressive: a modern car emits only a fraction of the amounts of noise and exhaust pollutants produced by its predecessors 30 years ago. The contributions to this book were written by experts, most of whom have been actively involved in the development of modern automobiles and their combustion engines for more than 30 years. They have participated in all phases of the ecological development of the automobile and summarize their experience and know-how in this book .