Absolute Continuity Under Time Shift of Trajectories and Related Stochastic Calculus

Absolute Continuity Under Time Shift of Trajectories and Related Stochastic Calculus PDF Author: Jörg-Uwe Löbus
Publisher: American Mathematical Soc.
ISBN: 147042603X
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The text is concerned with a class of two-sided stochastic processes of the form . Here is a two-sided Brownian motion with random initial data at time zero and is a function of . Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when is a jump process. Absolute continuity of under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, , and on with we verify i.e. where the product is taken over all coordinates. Here is the divergence of with respect to the initial position. Crucial for this is the temporal homogeneity of in the sense that , , where is the trajectory taking the constant value . By means of such a density, partial integration relative to a generator type operator of the process is established. Relative compactness of sequences of such processes is established.

Absolute Continuity Under Time Shift of Trajectories and Related Stochastic Calculus

Absolute Continuity Under Time Shift of Trajectories and Related Stochastic Calculus PDF Author: Jörg-Uwe Löbus
Publisher: American Mathematical Soc.
ISBN: 147042603X
Category : Mathematics
Languages : en
Pages : 148

Get Book Here

Book Description
The text is concerned with a class of two-sided stochastic processes of the form . Here is a two-sided Brownian motion with random initial data at time zero and is a function of . Elements of the related stochastic calculus are introduced. In particular, the calculus is adjusted to the case when is a jump process. Absolute continuity of under time shift of trajectories is investigated. For example under various conditions on the initial density with respect to the Lebesgue measure, , and on with we verify i.e. where the product is taken over all coordinates. Here is the divergence of with respect to the initial position. Crucial for this is the temporal homogeneity of in the sense that , , where is the trajectory taking the constant value . By means of such a density, partial integration relative to a generator type operator of the process is established. Relative compactness of sequences of such processes is established.

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori

Sobolev, Besov and Triebel-Lizorkin Spaces on Quantum Tori PDF Author: Xiao Xiong
Publisher: American Mathematical Soc.
ISBN: 1470428067
Category : Mathematics
Languages : en
Pages : 130

Get Book Here

Book Description
This paper gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative -torus (with a skew symmetric real -matrix). These spaces share many properties with their classical counterparts. The authors prove, among other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces.

Crossed Products by Hecke Pairs

Crossed Products by Hecke Pairs PDF Author: Rui Palma
Publisher: American Mathematical Soc.
ISBN: 1470428091
Category : Mathematics
Languages : en
Pages : 156

Get Book Here

Book Description
The author develops a theory of crossed products by actions of Hecke pairs , motivated by applications in non-abelian -duality. His approach gives back the usual crossed product construction whenever is a group and retains many of the aspects of crossed products by groups. The author starts by laying the -algebraic foundations of these crossed products by Hecke pairs and exploring their representation theory and then proceeds to study their different -completions. He establishes that his construction coincides with that of Laca, Larsen and Neshveyev whenever they are both definable and, as an application of his theory, he proves a Stone-von Neumann theorem for Hecke pairs which encompasses the work of an Huef, Kaliszewski and Raeburn.

Type II Blow Up Manifolds for the Energy Supercritical Semilinear Wave Equation

Type II Blow Up Manifolds for the Energy Supercritical Semilinear Wave Equation PDF Author: Charles Collot
Publisher: American Mathematical Soc.
ISBN: 147042813X
Category : Mathematics
Languages : en
Pages : 176

Get Book Here

Book Description
Our analysis adapts the robust energy method developed for the study of energy critical bubbles by Merle-Rapha¨el-Rodnianski, Rapha¨el-Rodnianski and Rapha¨el- Schweyer, the study of this issue for the supercritical semilinear heat equation done by Herrero-Vel´azquez, Matano-Merle and Mizoguchi, and the analogous result for the energy supercritical Schr¨odinger equation by Merle-Rapha¨el-Rodnianski.

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups

On Non-Generic Finite Subgroups of Exceptional Algebraic Groups PDF Author: Alastair J. Litterick
Publisher: American Mathematical Soc.
ISBN: 1470428377
Category : Mathematics
Languages : en
Pages : 168

Get Book Here

Book Description
The study of finite subgroups of a simple algebraic group $G$ reduces in a sense to those which are almost simple. If an almost simple subgroup of $G$ has a socle which is not isomorphic to a group of Lie type in the underlying characteristic of $G$, then the subgroup is called non-generic. This paper considers non-generic subgroups of simple algebraic groups of exceptional type in arbitrary characteristic.

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds

Szego Kernel Asymptotics for High Power of CR Line Bundles and Kodaira Embedding Theorems on CR Manifolds PDF Author: Chin-Yu Hsiao
Publisher: American Mathematical Soc.
ISBN: 1470441012
Category : Mathematics
Languages : en
Pages : 154

Get Book Here

Book Description
Let X be an abstract not necessarily compact orientable CR manifold of dimension 2n−1, n⩾2, and let Lk be the k-th tensor power of a CR complex line bundle L over X. Given q∈{0,1,…,n−1}, let □(q)b,k be the Gaffney extension of Kohn Laplacian for (0,q) forms with values in Lk. For λ≥0, let Π(q)k,≤λ:=E((−∞,λ]), where E denotes the spectral measure of □(q)b,k. In this work, the author proves that Π(q)k,≤k−N0F∗k, FkΠ(q)k,≤k−N0F∗k, N0≥1, admit asymptotic expansions with respect to k on the non-degenerate part of the characteristic manifold of □(q)b,k, where Fk is some kind of microlocal cut-off function. Moreover, we show that FkΠ(q)k,≤0F∗k admits a full asymptotic expansion with respect to k if □(q)b,k has small spectral gap property with respect to Fk and Π(q)k,≤0 is k-negligible away the diagonal with respect to Fk. By using these asymptotics, the authors establish almost Kodaira embedding theorems on CR manifolds and Kodaira embedding theorems on CR manifolds with transversal CR S1 action.

Holomorphic Automorphic Forms and Cohomology

Holomorphic Automorphic Forms and Cohomology PDF Author: Roelof Bruggeman
Publisher: American Mathematical Soc.
ISBN: 1470428555
Category : Mathematics
Languages : en
Pages : 182

Get Book Here

Book Description


Elliptic PDEs on Compact Ricci Limit Spaces and Applications

Elliptic PDEs on Compact Ricci Limit Spaces and Applications PDF Author: Shouhei Honda
Publisher: American Mathematical Soc.
ISBN: 1470428547
Category : Mathematics
Languages : en
Pages : 104

Get Book Here

Book Description
In this paper the author studies elliptic PDEs on compact Gromov-Hausdorff limit spaces of Riemannian manifolds with lower Ricci curvature bounds. In particular the author establishes continuities of geometric quantities, which include solutions of Poisson's equations, eigenvalues of Schrödinger operators, generalized Yamabe constants and eigenvalues of the Hodge Laplacian, with respect to the Gromov-Hausdorff topology. The author applies these to the study of second-order differential calculus on such limit spaces.

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem

Mathematical Study of Degenerate Boundary Layers: A Large Scale Ocean Circulation Problem PDF Author: Anne-Laure Dalibard
Publisher: American Mathematical Soc.
ISBN: 1470428350
Category : Mathematics
Languages : en
Pages : 118

Get Book Here

Book Description
This paper is concerned with a complete asymptotic analysis as $E \to 0$ of the Munk equation $\partial _x\psi -E \Delta ^2 \psi = \tau $ in a domain $\Omega \subset \mathbf R^2$, supplemented with boundary conditions for $\psi $ and $\partial _n \psi $. This equation is a simple model for the circulation of currents in closed basins, the variables $x$ and $y$ being respectively the longitude and the latitude. A crude analysis shows that as $E \to 0$, the weak limit of $\psi $ satisfies the so-called Sverdrup transport equation inside the domain, namely $\partial _x \psi ^0=\tau $, while boundary layers appear in the vicinity of the boundary.

Globally Generated Vector Bundles with Small $c_1$ on Projective Spaces

Globally Generated Vector Bundles with Small $c_1$ on Projective Spaces PDF Author: Cristian Anghel
Publisher: American Mathematical Soc.
ISBN: 1470428385
Category : Mathematics
Languages : en
Pages : 120

Get Book Here

Book Description
The authors provide a complete classification of globally generated vector bundles with first Chern class $c_1 \leq 5$ one the projective plane and with $c_1 \leq 4$ on the projective $n$-space for $n \geq 3$. This reproves and extends, in a systematic manner, previous results obtained for $c_1 \leq 2$ by Sierra and Ugaglia [J. Pure Appl. Algebra 213 (2009), 2141-2146], and for $c_1 = 3$ by Anghel and Manolache [Math. Nachr. 286 (2013), 1407-1423] and, independently, by Sierra and Ugaglia [J. Pure Appl. Algebra 218 (2014), 174-180]. It turns out that the case $c_1 = 4$ is much more involved than the previous cases, especially on the projective 3-space. Among the bundles appearing in our classification one can find the Sasakura rank 3 vector bundle on the projective 4-space (conveniently twisted). The authors also propose a conjecture concerning the classification of globally generated vector bundles with $c_1 \leq n - 1$ on the projective $n$-space. They verify the conjecture for $n \leq 5$.