Author: Hiroyuki Yoshida
Publisher: American Mathematical Soc.
ISBN: 0821834533
Category : Mathematics
Languages : en
Pages : 296
Book Description
The central theme of this book is an invariant attached to an ideal class of a totally real algebraic number field. This invariant provides us a unified understanding of periods of abelian varieties with complex multiplication and the Stark-Shintani units. This is a new point of view, and the book contains many new results related to it. To place these results in proper perspective and to supply tools to attack unsolved problems, the author gives systematic expositions of fundamental topics. Thus the book treats the multiple gamma function, the Stark conjecture, Shimura's period symbol, the absolute period symbol, Eisenstein series on sGL(2)s, and a limit formula of Kronecker's type. The discussion of each of these topics is enhanced by many examples. The majority of the text is written assuming some familiarity with algebraic number theory. About thirty problems are included, some of which are quite challenging. The book is intended for graduate students and researchers working in number theory and automorphic forms.
Absolute CM-Periods
Author: Hiroyuki Yoshida
Publisher: American Mathematical Soc.
ISBN: 0821834533
Category : Mathematics
Languages : en
Pages : 296
Book Description
The central theme of this book is an invariant attached to an ideal class of a totally real algebraic number field. This invariant provides us a unified understanding of periods of abelian varieties with complex multiplication and the Stark-Shintani units. This is a new point of view, and the book contains many new results related to it. To place these results in proper perspective and to supply tools to attack unsolved problems, the author gives systematic expositions of fundamental topics. Thus the book treats the multiple gamma function, the Stark conjecture, Shimura's period symbol, the absolute period symbol, Eisenstein series on sGL(2)s, and a limit formula of Kronecker's type. The discussion of each of these topics is enhanced by many examples. The majority of the text is written assuming some familiarity with algebraic number theory. About thirty problems are included, some of which are quite challenging. The book is intended for graduate students and researchers working in number theory and automorphic forms.
Publisher: American Mathematical Soc.
ISBN: 0821834533
Category : Mathematics
Languages : en
Pages : 296
Book Description
The central theme of this book is an invariant attached to an ideal class of a totally real algebraic number field. This invariant provides us a unified understanding of periods of abelian varieties with complex multiplication and the Stark-Shintani units. This is a new point of view, and the book contains many new results related to it. To place these results in proper perspective and to supply tools to attack unsolved problems, the author gives systematic expositions of fundamental topics. Thus the book treats the multiple gamma function, the Stark conjecture, Shimura's period symbol, the absolute period symbol, Eisenstein series on sGL(2)s, and a limit formula of Kronecker's type. The discussion of each of these topics is enhanced by many examples. The majority of the text is written assuming some familiarity with algebraic number theory. About thirty problems are included, some of which are quite challenging. The book is intended for graduate students and researchers working in number theory and automorphic forms.
Arithmetic Geometry And Number Theory
Author: Lin Weng
Publisher: World Scientific
ISBN: 9814477931
Category : Mathematics
Languages : en
Pages : 411
Book Description
Mathematics is very much a part of our culture; and this invaluable collection serves the purpose of developing the branches involved, popularizing the existing theories and guiding our future explorations.More precisely, the goal is to bring the reader to the frontier of current developments in arithmetic geometry and number theory through the works of Deninger-Werner in vector bundles on curves over p-adic fields; of Jiang on local gamma factors in automorphic representations; of Weng on Deligne pairings and Takhtajan-Zograf metrics; of Yoshida on CM-periods; of Yu on transcendence of special values of zetas over finite fields. In addition, the lecture notes presented by Weng at the University of Toronto from October to November 2005 explain basic ideas and the reasons (not just the language and conclusions) behind Langlands' fundamental, yet notably difficult, works on the Eisenstein series and spectral decompositions.And finally, a brand new concept by Weng called the Geometric Arithmetic program that uses algebraic and/or analytic methods, based on geometric considerations, to develop the promising and yet to be cultivated land of global arithmetic that includes non-abelian Class Field Theory, Riemann Hypothesis and non-abelian Zeta and L Functions, etc.
Publisher: World Scientific
ISBN: 9814477931
Category : Mathematics
Languages : en
Pages : 411
Book Description
Mathematics is very much a part of our culture; and this invaluable collection serves the purpose of developing the branches involved, popularizing the existing theories and guiding our future explorations.More precisely, the goal is to bring the reader to the frontier of current developments in arithmetic geometry and number theory through the works of Deninger-Werner in vector bundles on curves over p-adic fields; of Jiang on local gamma factors in automorphic representations; of Weng on Deligne pairings and Takhtajan-Zograf metrics; of Yoshida on CM-periods; of Yu on transcendence of special values of zetas over finite fields. In addition, the lecture notes presented by Weng at the University of Toronto from October to November 2005 explain basic ideas and the reasons (not just the language and conclusions) behind Langlands' fundamental, yet notably difficult, works on the Eisenstein series and spectral decompositions.And finally, a brand new concept by Weng called the Geometric Arithmetic program that uses algebraic and/or analytic methods, based on geometric considerations, to develop the promising and yet to be cultivated land of global arithmetic that includes non-abelian Class Field Theory, Riemann Hypothesis and non-abelian Zeta and L Functions, etc.
Automorphic Forms, Automorphic Representations, and Arithmetic
Author: Robert S. Doran
Publisher: American Mathematical Soc.
ISBN: 0821810502
Category :
Languages : en
Pages : 293
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821810502
Category :
Languages : en
Pages : 293
Book Description
Mathematical Reviews
Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 904
Book Description
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 904
Book Description
Algebra and Number Theory
Author: Rajat Tandon
Publisher: Springer
ISBN: 9386279231
Category : Mathematics
Languages : en
Pages : 411
Book Description
Contributed articles presented at the Conference.
Publisher: Springer
ISBN: 9386279231
Category : Mathematics
Languages : en
Pages : 411
Book Description
Contributed articles presented at the Conference.
The Ricci Flow: Techniques and Applications
Author: Bennett Chow
Publisher: American Mathematical Soc.
ISBN: 0821844296
Category : Global differential geometry
Languages : en
Pages : 489
Book Description
Publisher: American Mathematical Soc.
ISBN: 0821844296
Category : Global differential geometry
Languages : en
Pages : 489
Book Description
Vertex Algebras and Algebraic Curves
Author: Edward Frenkel
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418
Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Publisher: American Mathematical Soc.
ISBN: 0821836749
Category : Mathematics
Languages : en
Pages : 418
Book Description
Vertex algebras are algebraic objects that encapsulate the concept of operator product expansion from two-dimensional conformal field theory. Vertex algebras are fast becoming ubiquitous in many areas of modern mathematics, with applications to representation theory, algebraic geometry, the theory of finite groups, modular functions, topology, integrable systems, and combinatorics. This book is an introduction to the theory of vertex algebras with a particular emphasis on the relationship with the geometry of algebraic curves. The notion of a vertex algebra is introduced in a coordinate-independent way, so that vertex operators become well defined on arbitrary smooth algebraic curves, possibly equipped with additional data, such as a vector bundle. Vertex algebras then appear as the algebraic objects encoding the geometric structure of various moduli spaces associated with algebraic curves. Therefore they may be used to give a geometric interpretation of various questions of representation theory. The book contains many original results, introduces important new concepts, and brings new insights into the theory of vertex algebras. The authors have made a great effort to make the book self-contained and accessible to readers of all backgrounds. Reviewers of the first edition anticipated that it would have a long-lasting influence on this exciting field of mathematics and would be very useful for graduate students and researchers interested in the subject. This second edition, substantially improved and expanded, includes several new topics, in particular an introduction to the Beilinson-Drinfeld theory of factorization algebras and the geometric Langlands correspondence.
Morse Theoretic Aspects of $p$-Laplacian Type Operators
Author: Kanishka Perera
Publisher: American Mathematical Soc.
ISBN: 0821849689
Category : Mathematics
Languages : en
Pages : 170
Book Description
Presents a Morse theoretic study of a very general class of homogeneous operators that includes the $p$-Laplacian as a special case. The $p$-Laplacian operator is a quasilinear differential operator that arises in many applications such as non-Newtonian fluid flows. Working with a new sequence of eigenvalues that uses the cohomological index, the authors systematically develop alternative tools such as nonlinear linking and local splitting theories in order to effectively apply Morse theory to quasilinear problems.
Publisher: American Mathematical Soc.
ISBN: 0821849689
Category : Mathematics
Languages : en
Pages : 170
Book Description
Presents a Morse theoretic study of a very general class of homogeneous operators that includes the $p$-Laplacian as a special case. The $p$-Laplacian operator is a quasilinear differential operator that arises in many applications such as non-Newtonian fluid flows. Working with a new sequence of eigenvalues that uses the cohomological index, the authors systematically develop alternative tools such as nonlinear linking and local splitting theories in order to effectively apply Morse theory to quasilinear problems.
Geometric Theory of Incompressible Flows with Applications to Fluid Dynamics
Author: Tian Ma
Publisher: American Mathematical Soc.
ISBN: 0821836935
Category : Mathematics
Languages : en
Pages : 248
Book Description
This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids. The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations. Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored. The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.
Publisher: American Mathematical Soc.
ISBN: 0821836935
Category : Mathematics
Languages : en
Pages : 248
Book Description
This monograph presents a geometric theory for incompressible flow and its applications to fluid dynamics. The main objective is to study the stability and transitions of the structure of incompressible flows and its applications to fluid dynamics and geophysical fluid dynamics. The development of the theory and its applications goes well beyond its original motivation of the study of oceanic dynamics. The authors present a substantial advance in the use of geometric and topological methods to analyze and classify incompressible fluid flows. The approach introduces genuinely innovative ideas to the study of the partial differential equations of fluid dynamics. One particularly useful development is a rigorous theory for boundary layer separation of incompressible fluids. The study of incompressible flows has two major interconnected parts. The first is the development of a global geometric theory of divergence-free fields on general two-dimensional compact manifolds. The second is the study of the structure of velocity fields for two-dimensional incompressible fluid flows governed by the Navier-Stokes equations or the Euler equations. Motivated by the study of problems in geophysical fluid dynamics, the program of research in this book seeks to develop a new mathematical theory, maintaining close links to physics along the way. In return, the theory is applied to physical problems, with more problems yet to be explored. The material is suitable for researchers and advanced graduate students interested in nonlinear PDEs and fluid dynamics.
Connective Real $K$-Theory of Finite Groups
Author: Robert Ray Bruner
Publisher: American Mathematical Soc.
ISBN: 0821851896
Category : Mathematics
Languages : en
Pages : 328
Book Description
Focusing on the study of real connective $K$-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it, the authors define equivariant versions of connective $KO$-theory and connective $K$-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory.
Publisher: American Mathematical Soc.
ISBN: 0821851896
Category : Mathematics
Languages : en
Pages : 328
Book Description
Focusing on the study of real connective $K$-theory including $ko^*(BG)$ as a ring and $ko_*(BG)$ as a module over it, the authors define equivariant versions of connective $KO$-theory and connective $K$-theory with reality, in the sense of Atiyah, which give well-behaved, Noetherian, uncompleted versions of the theory.