Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262331713
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262331713
Category : Computers
Languages : en
Pages : 350

Get Book Here

Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.

Managerial Decisions Under Uncertainty

Managerial Decisions Under Uncertainty PDF Author: Bruce F. Baird
Publisher: John Wiley & Sons
ISBN: 9780471858911
Category : Business & Economics
Languages : en
Pages : 546

Get Book Here

Book Description
How to improve decision-making skills in realistic situations and do it in a reasonably nonmathematical fashion. Develops practical techniques for deciding upon the best strategies in a variety of situations. Provides methods for reducing complex problems to easily-drawn decision diagrams (trees), supported by real-world examples. Includes detailed cases that employ the methods described in the text. Each chapter contains illustrative examples and exercises.

A Study of Business Decisions Under Uncertainty

A Study of Business Decisions Under Uncertainty PDF Author: Andreas Stark
Publisher: Universal-Publishers
ISBN: 1599423499
Category : Business & Economics
Languages : en
Pages : 408

Get Book Here

Book Description
This dissertation will discuss the uncertainty encountered in the daily operations of businesses. The concepts will be developed by first giving an overview of probability and statistics as used in our everyday activities, such as the basic principles of probability, univariate and multivariate statistics, data clustering and mapping, as well as time sequence and spectral analysis. The examples used will be from the oil and gas exploration industry because the risks taken in this industry are normally quite large and are ideal for showing the application of the various techniques for minimizing risk. Subsequently, the discussion will deal with basic risk analysis, spatial and time variations of risk, geotechnical risk analysis, risk aversion and how it is affected by personal biases, and how to use portfolios to hedge risk together with the application of real options. Next, fractal analysis and its application to economics and risk analysis will be examined, followed by some examples showing the change in the Value at Risk under Fractal Brownian Motions. Finally, a neural network application is shown whereby some of these risks and risk factors will be combined to forecast the best possible outcome given a certain knowledge base. The chapters will discuss: Basic probability techniques and uncertainty principles Analysis and diversification for exploration projects The value and risk of information in the decision process Simulation techniques and modeling of uncertainty Project valuation and project risk return Modeling risk propensity or preference analysis of exploration projects Application of fractals to risk analysis Simultaneous prediction of strategic risk and decision attributes using multivariate statistics and neural networks"

Decision Making under Deep Uncertainty

Decision Making under Deep Uncertainty PDF Author: Vincent A. W. J. Marchau
Publisher: Springer
ISBN: 3030052524
Category : Business & Economics
Languages : en
Pages : 408

Get Book Here

Book Description
This open access book focuses on both the theory and practice associated with the tools and approaches for decisionmaking in the face of deep uncertainty. It explores approaches and tools supporting the design of strategic plans under deep uncertainty, and their testing in the real world, including barriers and enablers for their use in practice. The book broadens traditional approaches and tools to include the analysis of actors and networks related to the problem at hand. It also shows how lessons learned in the application process can be used to improve the approaches and tools used in the design process. The book offers guidance in identifying and applying appropriate approaches and tools to design plans, as well as advice on implementing these plans in the real world. For decisionmakers and practitioners, the book includes realistic examples and practical guidelines that should help them understand what decisionmaking under deep uncertainty is and how it may be of assistance to them. Decision Making under Deep Uncertainty: From Theory to Practice is divided into four parts. Part I presents five approaches for designing strategic plans under deep uncertainty: Robust Decision Making, Dynamic Adaptive Planning, Dynamic Adaptive Policy Pathways, Info-Gap Decision Theory, and Engineering Options Analysis. Each approach is worked out in terms of its theoretical foundations, methodological steps to follow when using the approach, latest methodological insights, and challenges for improvement. In Part II, applications of each of these approaches are presented. Based on recent case studies, the practical implications of applying each approach are discussed in depth. Part III focuses on using the approaches and tools in real-world contexts, based on insights from real-world cases. Part IV contains conclusions and a synthesis of the lessons that can be drawn for designing, applying, and implementing strategic plans under deep uncertainty, as well as recommendations for future work. The publication of this book has been funded by the Radboud University, the RAND Corporation, Delft University of Technology, and Deltares.

Decision Making under Uncertainty

Decision Making under Uncertainty PDF Author: Kerstin Preuschoff
Publisher: Frontiers Media SA
ISBN: 2889194663
Category : Biological psychiatry
Languages : en
Pages : 144

Get Book Here

Book Description
Most decisions in life are based on incomplete information and have uncertain consequences. To successfully cope with real-life situations, the nervous system has to estimate, represent and eventually resolve uncertainty at various levels. A common tradeoff in such decisions involves those between the magnitude of the expected rewards and the uncertainty of obtaining the rewards. For instance, a decision maker may choose to forgo the high expected rewards of investing in the stock market and settle instead for the lower expected reward and much less uncertainty of a savings account. Little is known about how different forms of uncertainty, such as risk or ambiguity, are processed and learned about and how they are integrated with expected rewards and individual preferences throughout the decision making process. With this Research Topic we aim to provide a deeper and more detailed understanding of the processes behind decision making under uncertainty.

Risk, Choice, and Uncertainty

Risk, Choice, and Uncertainty PDF Author: George G. Szpiro
Publisher: Columbia University Press
ISBN: 0231550979
Category : Business & Economics
Languages : en
Pages : 413

Get Book Here

Book Description
At its core, economics is about making decisions. In the history of economic thought, great intellectual prowess has been exerted toward devising exquisite theories of optimal decision making in situations of constraint, risk, and scarcity. Yet not all of our choices are purely logical, and so there is a longstanding tension between those emphasizing the rational and irrational sides of human behavior. One strand develops formal models of rational utility maximizing while the other draws on what behavioral science has shown about our tendency to act irrationally. In Risk, Choice, and Uncertainty, George G. Szpiro offers a new narrative of the three-century history of the study of decision making, tracing how crucial ideas have evolved and telling the stories of the thinkers who shaped the field. Szpiro examines economics from the early days of theories spun from anecdotal evidence to the rise of a discipline built around elegant mathematics through the past half century’s interest in describing how people actually behave. Considering the work of Locke, Bentham, Jevons, Walras, Friedman, Tversky and Kahneman, Thaler, and a range of other thinkers, he sheds light on the vast scope of discovery since Bernoulli first proposed a solution to the St. Petersburg Paradox. Presenting fundamental mathematical theories in easy-to-understand language, Risk, Choice, and Uncertainty is a revelatory history for readers seeking to grasp the grand sweep of economic thought.

Decision Making Under Uncertainty

Decision Making Under Uncertainty PDF Author: David E. Bell
Publisher: Thomson South-Western
ISBN:
Category : Business & Economics
Languages : en
Pages : 228

Get Book Here

Book Description
These authors draw on nearly 50 years of combined teaching and consulting experience to give readers a straightforward yet systematic approach for making estimates about the likelihood and consequences of future events -- and then using those assessments to arrive at sound decisions. The book's real-world cases, supplemented with expository text and spreadsheets, help readers master such techniques as decision trees and simulation, such concepts as probability, the value of information, and strategic gaming; and such applications as inventory stocking problems, bidding situations, and negotiating.

Decision Making and Business Performance

Decision Making and Business Performance PDF Author: Eric J. Bolland
Publisher: Edward Elgar Publishing
ISBN: 1786430169
Category : Business enterprises
Languages : en
Pages : 311

Get Book Here

Book Description
This breakthrough study examines how business decisions explain successful and unsuccessful performance. Real world and academic research is evaluated, including interviews and cases studies, to create a model of how decisions and performance are connected for businesses of all sizes. Recommendations are made to optimize decision making and projections about the future of decision making and performance are provided.

Bounded Rationality in Decision Making Under Uncertainty: Towards Optimal Granularity

Bounded Rationality in Decision Making Under Uncertainty: Towards Optimal Granularity PDF Author: Joe Lorkowski
Publisher: Springer
ISBN: 3319622145
Category : Technology & Engineering
Languages : en
Pages : 167

Get Book Here

Book Description
This book addresses an intriguing question: are our decisions rational? It explains seemingly irrational human decision-making behavior by taking into account our limited ability to process information. It also shows with several examples that optimization under granularity restriction leads to observed human decision-making. Drawing on the Nobel-prize-winning studies by Kahneman and Tversky, researchers have found many examples of seemingly irrational decisions: e.g., we overestimate the probability of rare events. Our explanation is that since human abilities to process information are limited, we operate not with the exact values of relevant quantities, but with “granules” that contain these values. We show that optimization under such granularity indeed leads to observed human behavior. In particular, for the first time, we explain the mysterious empirical dependence of betting odds on actual probabilities. This book can be recommended to all students interested in human decision-making, to researchers whose work involves human decisions, and to practitioners who design and employ systems involving human decision-making —so that they can better utilize our ability to make decisions under uncertainty.

Investment under Uncertainty

Investment under Uncertainty PDF Author: Robert K. Dixit
Publisher: Princeton University Press
ISBN: 1400830176
Category : Business & Economics
Languages : en
Pages : 484

Get Book Here

Book Description
How should firms decide whether and when to invest in new capital equipment, additions to their workforce, or the development of new products? Why have traditional economic models of investment failed to explain the behavior of investment spending in the United States and other countries? In this book, Avinash Dixit and Robert Pindyck provide the first detailed exposition of a new theoretical approach to the capital investment decisions of firms, stressing the irreversibility of most investment decisions, and the ongoing uncertainty of the economic environment in which these decisions are made. In so doing, they answer important questions about investment decisions and the behavior of investment spending. This new approach to investment recognizes the option value of waiting for better (but never complete) information. It exploits an analogy with the theory of options in financial markets, which permits a much richer dynamic framework than was possible with the traditional theory of investment. The authors present the new theory in a clear and systematic way, and consolidate, synthesize, and extend the various strands of research that have come out of the theory. Their book shows the importance of the theory for understanding investment behavior of firms; develops the implications of this theory for industry dynamics and for government policy concerning investment; and shows how the theory can be applied to specific industries and to a wide variety of business problems.