A Study in Computational Fluid Dynamics for the Determination of Convective Heat and Vapour Transfer Coefficients

A Study in Computational Fluid Dynamics for the Determination of Convective Heat and Vapour Transfer Coefficients PDF Author: Adam Neale
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Convective heat and moisture transfer coefficients are required to simulate the performance of building envelope systems, for example, in the simulation of the drying of wood or brick cladding wetted by driving rain. Such coefficients are dependent on the velocity and type of the air flow, the air and material temperature, the moisture content of the material and the relative humidity of the air. Convective heat transfer coefficient correlations are readily available for many geometries and air flow conditions, but primarily for mechanical engineering applications. It is not so for convective mass transfer coefficients. Building physicists must often put up with values from literature that are not entirely adequate or perform measurements for the conditions under study. The overall goal of this work was to study the feasibility and accuracy of using computational fluid dynamics (CFD) to calculate convective heat and vapour transfer coefficients. The objectives were: (1) to validate the CFD simulation results for boundary layer velocity and temperature profiles for laminar and turbulent forced convection, and for turbulent natural convection; (2) to simulate vapor transfer between air and a porous material; and (3) to compare the calculated convective heat and vapor transfer coefficients with literature experimental data. Several CFD simulations were performed to calculate the boundary layer velocity and temperature profiles in different configurations. The calculated convective heat transfer coefficients were compared with analytical, semi-empirical and/or experimental results from literature. A grid sensitivity analysis was performed to determine the grid independent solutions for certain cases. The overall conclusion was that CFD accurately predicted the boundary layer velocity and temperature profiles and the convective heat transfer coefficients for the cases studied. In order to simulate vapour transfer between air and porous materials, a model was developed using CFD coupled with an external vapour transport model. CFD was used to model heat and water vapour transport in the air, including both convective and radiative heat transfer, and heat transport within the material. Vapour transport in the material was calculated externally and coupled with the CFD solution at specific time steps. A transient case of air flow over a drying wood sample was simulated using the developed model. A sensitivity analysis was performed on relevant model parameters, such as the material properties of the wood and flow conditions of the air layer.

A Study in Computational Fluid Dynamics for the Determination of Convective Heat and Vapour Transfer Coefficients

A Study in Computational Fluid Dynamics for the Determination of Convective Heat and Vapour Transfer Coefficients PDF Author: Adam Neale
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Convective heat and moisture transfer coefficients are required to simulate the performance of building envelope systems, for example, in the simulation of the drying of wood or brick cladding wetted by driving rain. Such coefficients are dependent on the velocity and type of the air flow, the air and material temperature, the moisture content of the material and the relative humidity of the air. Convective heat transfer coefficient correlations are readily available for many geometries and air flow conditions, but primarily for mechanical engineering applications. It is not so for convective mass transfer coefficients. Building physicists must often put up with values from literature that are not entirely adequate or perform measurements for the conditions under study. The overall goal of this work was to study the feasibility and accuracy of using computational fluid dynamics (CFD) to calculate convective heat and vapour transfer coefficients. The objectives were: (1) to validate the CFD simulation results for boundary layer velocity and temperature profiles for laminar and turbulent forced convection, and for turbulent natural convection; (2) to simulate vapor transfer between air and a porous material; and (3) to compare the calculated convective heat and vapor transfer coefficients with literature experimental data. Several CFD simulations were performed to calculate the boundary layer velocity and temperature profiles in different configurations. The calculated convective heat transfer coefficients were compared with analytical, semi-empirical and/or experimental results from literature. A grid sensitivity analysis was performed to determine the grid independent solutions for certain cases. The overall conclusion was that CFD accurately predicted the boundary layer velocity and temperature profiles and the convective heat transfer coefficients for the cases studied. In order to simulate vapour transfer between air and porous materials, a model was developed using CFD coupled with an external vapour transport model. CFD was used to model heat and water vapour transport in the air, including both convective and radiative heat transfer, and heat transport within the material. Vapour transport in the material was calculated externally and coupled with the CFD solution at specific time steps. A transient case of air flow over a drying wood sample was simulated using the developed model. A sensitivity analysis was performed on relevant model parameters, such as the material properties of the wood and flow conditions of the air layer.

Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer PDF Author: Ryoichi Amano
Publisher: WIT Press
ISBN: 1845641442
Category : Technology & Engineering
Languages : en
Pages : 513

Get Book Here

Book Description
Heat transfer and fluid flow issues are of great significance and this state-of-the-art edited book with reference to new and innovative numerical methods will make a contribution for researchers in academia and research organizations, as well as industrial scientists and college students. The book provides comprehensive chapters on research and developments in emerging topics in computational methods, e.g., the finite volume method, finite element method as well as turbulent flow computational methods. Fundamentals of the numerical methods, comparison of various higher-order schemes for convection-diffusion terms, turbulence modeling, the pressure-velocity coupling, mesh generation and the handling of arbitrary geometries are presented. Results from engineering applications are provided. Chapters have been co-authored by eminent researchers.

Computational Fluid Dynamics and Heat Transfer

Computational Fluid Dynamics and Heat Transfer PDF Author: Pradip Majumdar
Publisher: CRC Press
ISBN: 1498703755
Category : Science
Languages : en
Pages : 696

Get Book Here

Book Description
This book provides a thorough understanding of fluid dynamics and heat and mass transfer. The Second Edition contains new chapters on mesh generation and computational modeling of turbulent flow. Combining theory and practice in classic problems and computer code, the text includes numerous worked-out examples. Students will be able to develop computational analysis models for complex problems more efficiently using commercial codes such as ANSYS, STAR CCM+, and COMSOL. With detailed explanations on how to implement computational methodology into computer code, students will be able to solve complex problems on their own and develop their own customized simulation models, including problems in heat transfer, mass transfer, and fluid flows. These problems are solved and illustrated in step-by-step derivations and figures. FEATURES Provides unified coverage of computational heat transfer and fluid dynamics Covers basic concepts and then applies computational methods for problem analysis and solution Covers most common higher-order time-approximation schemes Covers most common and advanced linear solvers Contains new chapters on mesh generation and computer modeling of turbulent flow Computational Fluid Dynamics and Heat Transfer, Second Edition, is valuable to engineering instructors and students taking courses in computational heat transfer and computational fluid dynamics.

Computational Fluid Flow and Heat Transfer

Computational Fluid Flow and Heat Transfer PDF Author: Mukesh Kumar Awasthi
Publisher: CRC Press
ISBN: 1040009220
Category : Technology & Engineering
Languages : en
Pages : 298

Get Book Here

Book Description
The text provides insight into the different mathematical tools and techniques that can be applied to the analysis and numerical computations of flow models. It further discusses important topics such as the heat transfer effect on boundary layer flow, modeling of flows through porous media, anisotropic polytrophic gas model, and thermal instability in viscoelastic fluids. This book: Discusses modeling of Rayleigh-Taylor instability in nanofluid layer and thermal instability in viscoelastic fluids Covers open FOAM simulation of free surface problems, and anisotropic polytrophic gas model Highlights the Sensitivity Analysis in Aerospace Engineering, MHD Flow of a Micropolar Hybrid Nanofluid, and IoT-Enabled Monitoring for Natural Convection Presents thermal behavior of nanofluid in complex geometries and heat transfer effect on Boundary layer flow Explains natural convection heat transfer in non-Newtonian fluids and homotropy series solution of the boundary layer flow Illustrates modeling of flows through porous media and investigates Shock-driven Richtmyer-Meshkov instability It is primarily written for senior undergraduate, graduate students, and academic researchers in the fields of Applied Sciences, Mechanical Engineering, Manufacturing Engineering, Production Engineering, Industrial engineering, Automotive engineering, and Aerospace engineering.

Applications of Computational Fluid Dynamics Simulation and Modeling

Applications of Computational Fluid Dynamics Simulation and Modeling PDF Author: Suvanjan Bhattacharyya
Publisher: BoD – Books on Demand
ISBN: 1839682477
Category : Science
Languages : en
Pages : 240

Get Book Here

Book Description
This book provides well-balanced coverage of computational fluid dynamics analysis for thermal and flow characteristics of various thermal and flow systems. It presents the latest research work to provide insight into modern thermal engineering applications. It also discusses enhanced heat transfer and flow characteristics.

Modeling and Simulation of Fluid Flow and Heat Transfer

Modeling and Simulation of Fluid Flow and Heat Transfer PDF Author: Reshu Gupta
Publisher: CRC Press
ISBN: 1003855660
Category : Technology & Engineering
Languages : en
Pages : 235

Get Book Here

Book Description
In the rapidly advancing modern world, scientific and technological understanding and innovation are reaching new heights. Computational fluid dynamics and heat transfer have emerged as powerful tools, playing a pivotal role in the analysis and design of complex engineering problems and processes. With the ability to mathematically model various engineering phenomena, these computational tools offer a deeper understanding of intricate dynamics before the physical prototype is created. Widely employed as simulation tools, computational fluid dynamics and heat transfer codes enable the virtual or digital prototype development of products and devices involving complex transport and multiphasic phenomena. They have become an indispensable element of the agile product development environment across diverse sectors of manufacturing, facilitating accelerated product development cycles. Key features of this book: Covers the analysis of advanced thermal engineering systems Explores the simulation of various fluids with slip effect Applies entropy and optimization techniques to thermal engineering systems Discusses heat and mass transfer phenomena Explores fluid flow and heat transfer in porous media Captures recent developments in analytical and computational methods used to investigate the complex mathematical models of fluid dynamics Covers the application of mathematical and computational modeling techniques to fluid flow problems in various geometries Modeling and Simulation of Fluid Flow and Heat Transfer delves into the fascinating world of fluid dynamics and heat transfer modeling, presenting an extensive exploration of these subjects. This book is a valuable resource for researchers, engineers, and students seeking to comprehend and apply numerical methods and computational tools in fluid dynamics and heat transfer problems.

Computational Fluid Dynamics for Incompressible Flows

Computational Fluid Dynamics for Incompressible Flows PDF Author: D.G. Roychowdhury
Publisher: CRC Press
ISBN: 1000096319
Category : Science
Languages : en
Pages : 417

Get Book Here

Book Description
This textbook covers fundamental and advanced concepts of computational fluid dynamics, a powerful and essential tool for fluid flow analysis. It discusses various governing equations used in the field, their derivations, and the physical and mathematical significance of partial differential equations and the boundary conditions. It covers fundamental concepts of finite difference and finite volume methods for diffusion, convection-diffusion problems both for cartesian and non-orthogonal grids. The solution of algebraic equations arising due to finite difference and finite volume discretization are highlighted using direct and iterative methods. Pedagogical features including solved problems and unsolved exercises are interspersed throughout the text for better understanding. The textbook is primarily written for senior undergraduate and graduate students in the field of mechanical engineering and aerospace engineering, for a course on computational fluid dynamics and heat transfer. The textbook will be accompanied by teaching resources including a solution manual for the instructors. Written clearly and with sufficient foundational background to strengthen fundamental knowledge of the topic. Offers a detailed discussion of both finite difference and finite volume methods. Discusses various higher-order bounded convective schemes, TVD discretisation schemes based on the flux limiter essential for a general purpose CFD computation. Discusses algorithms connected with pressure-linked equations for incompressible flow. Covers turbulence modelling like k-ε, k-ω, SST k-ω, Reynolds Stress Transport models. A separate chapter on best practice guidelines is included to help CFD practitioners.

Recent Advances in Fluid Dynamics

Recent Advances in Fluid Dynamics PDF Author: Jyotirmay Banerjee
Publisher: Springer Nature
ISBN: 9811933790
Category : Technology & Engineering
Languages : en
Pages : 507

Get Book Here

Book Description
This book presents select proceedings of the International Conference on Advances in Fluid Flow and Thermal Sciences (ICAFFTS 2021) and summarizes the modern research practices in fluid dynamics and fluid power. The content of the book involves advanced topics on turbulence, droplet deposition, oscillating flows, wave breaking, spray structure and its atomization and flow patterns in mini and micro channels. Technological concerns relevant to erosion of steam turbine blade due to droplets, influence of baffle cut and baffle pitch on flow regime, bubble formation and propagation in pool boiling, design optimization of flow regulating valves are included in the book. In addition, recent trends in small-scale hydropower plant and flow stability issues in nanofluids, solar water heating systems and closed-loop pulsating heat pipes are discussed. Special topics on airflow pattern in railway coach and vortex tube are also included. This book will be a reliable reference for academicians, researchers and professionals working in the areas of fluid dynamics and fluid power.

Thermal Hydraulics

Thermal Hydraulics PDF Author: Maurizio Cumo
Publisher: CRC Press
ISBN: 1351085727
Category : Technology & Engineering
Languages : en
Pages : 151

Get Book Here

Book Description
This text, including the description of the most relevant phenomenologies and of some advanced techniques in heat transfer with fluids, is mainly aimed at engineers using design or computer analysis programs and codes, in order to achieve a deeper understanding of the phenomenologies and of the applied analysis methods. This text will be helpful to people engaged in developing original computer programs or design methods, because they may find in it basic information on the computer program-oriented solutions of the conservation equations and of the various flow and heat transfer mechanisms. The selection of up-to-date correlations in various heat and mass transfer branches represents, for the designers using traditional techniques, a helpful instrument to integrate the basic handbooks.The trial of representing phenomenologies and problems through elementary concepts makes this text useful to students at the graduate level involved in the study of fluid flow and heat transfer.

Applied Computational Fluid Dynamics

Applied Computational Fluid Dynamics PDF Author: Hyoung Woo Oh
Publisher: BoD – Books on Demand
ISBN: 9535102710
Category : Computers
Languages : en
Pages : 358

Get Book Here

Book Description
This book is served as a reference text to meet the needs of advanced scientists and research engineers who seek for their own computational fluid dynamics (CFD) skills to solve a variety of fluid flow problems. Key Features: - Flow Modeling in Sedimentation Tank, - Greenhouse Environment, - Hypersonic Aerodynamics, - Cooling Systems Design, - Photochemical Reaction Engineering, - Atmospheric Reentry Problem, - Fluid-Structure Interaction (FSI), - Atomization, - Hydraulic Component Design, - Air Conditioning System, - Industrial Applications of CFD