A Sequence of Problems on Semigroups

A Sequence of Problems on Semigroups PDF Author: john neuberger
Publisher: Springer Science & Business Media
ISBN: 1461404304
Category : Mathematics
Languages : en
Pages : 131

Get Book Here

Book Description
This text consists of a sequence of problems which develop a variety of aspects in the field of semigroupsof operators. Many of the problems are not found easily in other books. Written in the Socratic/Moore method, this is a problem book without the answers presented. To get the most out of the content requires high motivation from the reader to work out the exercises. The reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research. The compactness of the volume and the reputation of the author lends this consider set of problems to be a 'classic' in the making. This text is highly recommended for us as supplementary material for 3 graduate level courses.

A Sequence of Problems on Semigroups

A Sequence of Problems on Semigroups PDF Author: john neuberger
Publisher: Springer Science & Business Media
ISBN: 1461404304
Category : Mathematics
Languages : en
Pages : 131

Get Book Here

Book Description
This text consists of a sequence of problems which develop a variety of aspects in the field of semigroupsof operators. Many of the problems are not found easily in other books. Written in the Socratic/Moore method, this is a problem book without the answers presented. To get the most out of the content requires high motivation from the reader to work out the exercises. The reader is given the opportunity to discover important developments of the subject and to quickly arrive at the point of independent research. The compactness of the volume and the reputation of the author lends this consider set of problems to be a 'classic' in the making. This text is highly recommended for us as supplementary material for 3 graduate level courses.

Finitely Generated Commutative Monoids

Finitely Generated Commutative Monoids PDF Author: J. C. Rosales
Publisher: Nova Publishers
ISBN: 9781560726708
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
A textbook for an undergraduate course, requiring only a knowledge of basic linear algebra. Explains how to compute presentations for finitely generated cancellative monoids, and from a presentation of a monoid, decide whether this monoid is cancellative, reduced, separative, finite, torsion free, group, affine, full, normal, etc. Of most interest to people working with semigroup theory, but also in other areas of algebra. Annotation copyrighted by Book News, Inc., Portland, OR

Algorithmic Problems in Groups and Semigroups

Algorithmic Problems in Groups and Semigroups PDF Author: Jean-Camille Birget
Publisher: Springer Science & Business Media
ISBN: 1461213886
Category : Mathematics
Languages : en
Pages : 312

Get Book Here

Book Description
This volume contains papers which are based primarily on talks given at an inter national conference on Algorithmic Problems in Groups and Semigroups held at the University of Nebraska-Lincoln from May ll-May 16, 1998. The conference coincided with the Centennial Celebration of the Department of Mathematics and Statistics at the University of Nebraska-Lincoln on the occasion of the one hun dredth anniversary of the granting of the first Ph.D. by the department. Funding was provided by the US National Science Foundation, the Department of Math ematics and Statistics, and the College of Arts and Sciences at the University of Nebraska-Lincoln, through the College's focus program in Discrete, Experimental and Applied Mathematics. The purpose of the conference was to bring together researchers with interests in algorithmic problems in group theory, semigroup theory and computer science. A particularly useful feature of this conference was that it provided a framework for exchange of ideas between the research communities in semigroup theory and group theory, and several of the papers collected here reflect this interac tion of ideas. The papers collected in this volume represent a cross section of some of the results and ideas that were discussed in the conference. They reflect a synthesis of overlapping ideas and techniques stimulated by problems concerning finite monoids, finitely presented mono ids, finitely presented groups and free groups.

Combinatorial Algebra: Syntax and Semantics

Combinatorial Algebra: Syntax and Semantics PDF Author: Mark V. Sapir
Publisher: Springer
ISBN: 3319080318
Category : Mathematics
Languages : en
Pages : 369

Get Book Here

Book Description
Combinatorial Algebra: Syntax and Semantics provides comprehensive account of many areas of combinatorial algebra. It contains self-contained proofs of more than 20 fundamental results, both classical and modern. This includes Golod–Shafarevich and Olshanskii's solutions of Burnside problems, Shirshov's solution of Kurosh's problem for PI rings, Belov's solution of Specht's problem for varieties of rings, Grigorchuk's solution of Milnor's problem, Bass–Guivarc'h theorem about growth of nilpotent groups, Kleiman's solution of Hanna Neumann's problem for varieties of groups, Adian's solution of von Neumann-Day's problem, Trahtman's solution of the road coloring problem of Adler, Goodwyn and Weiss. The book emphasize several ``universal" tools, such as trees, subshifts, uniformly recurrent words, diagrams and automata. With over 350 exercises at various levels of difficulty and with hints for the more difficult problems, this book can be used as a textbook, and aims to reach a wide and diversified audience. No prerequisites beyond standard courses in linear and abstract algebra are required. The broad appeal of this textbook extends to a variety of student levels: from advanced high-schoolers to undergraduates and graduate students, including those in search of a Ph.D. thesis who will benefit from the “Further reading and open problems” sections at the end of Chapters 2 –5. The book can also be used for self-study, engaging those beyond t he classroom setting: researchers, instructors, students, virtually anyone who wishes to learn and better understand this important area of mathematics.

Semigroups, Boundary Value Problems and Markov Processes

Semigroups, Boundary Value Problems and Markov Processes PDF Author: Kazuaki Taira
Publisher: Springer
ISBN: 3662436965
Category : Mathematics
Languages : en
Pages : 724

Get Book Here

Book Description
A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.

Co-Semigroups and Applications

Co-Semigroups and Applications PDF Author: Ioan I. Vrabie
Publisher: Elsevier
ISBN: 0080530044
Category : Mathematics
Languages : en
Pages : 386

Get Book Here

Book Description
The book contains a unitary and systematic presentation of both classical and very recent parts of a fundamental branch of functional analysis: linear semigroup theory with main emphasis on examples and applications. There are several specialized, but quite interesting, topics which didn't find their place into a monograph till now, mainly because they are very new. So, the book, although containing the main parts of the classical theory of Co-semigroups, as the Hille-Yosida theory, includes also several very new results, as for instance those referring to various classes of semigroups such as equicontinuous, compact, differentiable, or analytic, as well as to some nonstandard types of partial differential equations, i.e. elliptic and parabolic systems with dynamic boundary conditions, and linear or semilinear differential equations with distributed (time, spatial) measures. Moreover, some finite-dimensional-like methods for certain semilinear pseudo-parabolic, or hyperbolic equations are also disscussed. Among the most interesting applications covered are not only the standard ones concerning the Laplace equation subject to either Dirichlet, or Neumann boundary conditions, or the Wave, or Klein-Gordon equations, but also those referring to the Maxwell equations, the equations of Linear Thermoelasticity, the equations of Linear Viscoelasticity, to list only a few. Moreover, each chapter contains a set of various problems, all of them completely solved and explained in a special section at the end of the book.The book is primarily addressed to graduate students and researchers in the field, but it would be of interest for both physicists and engineers. It should be emphasised that it is almost self-contained, requiring only a basic course in Functional Analysis and Partial Differential Equations.

Semigroup Algebras

Semigroup Algebras PDF Author: Jan Okninski
Publisher: CRC Press
ISBN: 1000147665
Category : Mathematics
Languages : en
Pages : 319

Get Book Here

Book Description
Gathers and unifies the results of the theory of noncommutative semigroup rings, primarily drawing on the literature of the last 10 years, and including several new results. Okninski (Warsaw U., Poland) restricts coverage to the ring theoretical properties for which a systematic treatment is current

Semigroups in Geometrical Function Theory

Semigroups in Geometrical Function Theory PDF Author: D. Shoikhet
Publisher: Springer Science & Business Media
ISBN: 9401596328
Category : Mathematics
Languages : en
Pages : 231

Get Book Here

Book Description
Historically, complex analysis and geometrical function theory have been inten sively developed from the beginning of the twentieth century. They provide the foundations for broad areas of mathematics. In the last fifty years the theory of holomorphic mappings on complex spaces has been studied by many mathemati cians with many applications to nonlinear analysis, functional analysis, differential equations, classical and quantum mechanics. The laws of dynamics are usually presented as equations of motion which are written in the abstract form of a dy namical system: dx / dt + f ( x) = 0, where x is a variable describing the state of the system under study, and f is a vector function of x. The study of such systems when f is a monotone or an accretive (generally nonlinear) operator on the under lying space has been recently the subject of much research by analysts working on quite a variety of interesting topics, including boundary value problems, integral equations and evolution problems (see, for example, [19, 13] and [29]). In a parallel development (and even earlier) the generation theory of one parameter semigroups of holomorphic mappings in en has been the topic of interest in the theory of Markov stochastic processes and, in particular, in the theory of branching processes (see, for example, [63, 127, 48] and [69]).

Mathematical Foundations of Computer Science 2004

Mathematical Foundations of Computer Science 2004 PDF Author: Jirí Fiala
Publisher: Springer Science & Business Media
ISBN: 3540228233
Category : Computers
Languages : en
Pages : 916

Get Book Here

Book Description
This volume contains the papers presented at the 29th Symposium on Mat- matical Foundations of Computer Science, MFCS 2004, held in Prague, Czech Republic, August 22–27, 2004. The conference was organized by the Institute for Theoretical Computer Science (ITI) and the Department of Theoretical Com- terScienceandMathematicalLogic(KTIML)oftheFacultyofMathematicsand Physics of Charles University in Prague. It was supported in part by the Eu- pean Association for Theoretical Computer Science (EATCS) and the European Research Consortium for Informatics and Mathematics (ERCIM). Traditionally, the MFCS symposia encourage high-quality research in all branches of theoretical computer science. Ranging in scope from automata, f- mal languages, data structures, algorithms and computational geometry to c- plexitytheory,modelsofcomputation,andapplicationsincludingcomputational biology, cryptography, security and arti?cial intelligence, the conference o?ers a unique opportunity to researchers from diverse areas to meet and present their results to a general audience. The scienti?c program of this year’s MFCS took place in the lecture halls of the recently reconstructed building of the Faculty of Mathematics and P- sics in the historical center of Prague, with the famous Prague Castle and other celebratedhistoricalmonumentsinsight.Theviewfromthewindowswasach- lengingcompetitionforthespeakersinthe?ghtfortheattentionoftheaudience. But we did not fear the result: Due to the unusually tough competition for this year’s MFCS, the admitted presentations certainly attracted considerable in- rest. The conference program (and the proceedings) consisted of 60 contributed papers selected by the Program Committee from a total of 167 submissions.

Analytical Methods for Markov Semigroups

Analytical Methods for Markov Semigroups PDF Author: Luca Lorenzi
Publisher: CRC Press
ISBN: 1420011588
Category : Mathematics
Languages : en
Pages : 559

Get Book Here

Book Description
For the first time in book form, Analytical Methods for Markov Semigroups provides a comprehensive analysis on Markov semigroups both in spaces of bounded and continuous functions as well as in Lp spaces relevant to the invariant measure of the semigroup. Exploring specific techniques and results, the book collects and updates the literature associated with Markov semigroups. Divided into four parts, the book begins with the general properties of the semigroup in spaces of continuous functions: the existence of solutions to the elliptic and to the parabolic equation, uniqueness properties and counterexamples to uniqueness, and the definition and properties of the weak generator. It also examines properties of the Markov process and the connection with the uniqueness of the solutions. In the second part, the authors consider the replacement of RN with an open and unbounded domain of RN. They also discuss homogeneous Dirichlet and Neumann boundary conditions associated with the operator A. The final chapters analyze degenerate elliptic operators A and offer solutions to the problem. Using analytical methods, this book presents past and present results of Markov semigroups, making it suitable for applications in science, engineering, and economics.