A Runge-Kutta Eulerian-Lagrangian Localized Adjoint Method for Advection-reaction Equations

A Runge-Kutta Eulerian-Lagrangian Localized Adjoint Method for Advection-reaction Equations PDF Author: Alexsei S. Telyakovskii
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book Here

Book Description

A Runge-Kutta Eulerian-Lagrangian Localized Adjoint Method for Advection-reaction Equations

A Runge-Kutta Eulerian-Lagrangian Localized Adjoint Method for Advection-reaction Equations PDF Author: Alexsei S. Telyakovskii
Publisher:
ISBN:
Category :
Languages : en
Pages : 92

Get Book Here

Book Description


On a Monotonicity Preserving Eulerian Lagrangian Localized Adjoint Method for Advection-diffusion Equations

On a Monotonicity Preserving Eulerian Lagrangian Localized Adjoint Method for Advection-diffusion Equations PDF Author: Thimo Neubauer
Publisher:
ISBN:
Category :
Languages : en
Pages : 36

Get Book Here

Book Description


Eulerian-Lagrangian Localized Adjoint Methods for a Nonlinear Advection-diffusion Equation

Eulerian-Lagrangian Localized Adjoint Methods for a Nonlinear Advection-diffusion Equation PDF Author: Helge K. Dahle
Publisher:
ISBN:
Category : Adjoint differential equations
Languages : en
Pages : 51

Get Book Here

Book Description


Partial Differential Equations

Partial Differential Equations PDF Author: D. Sloan
Publisher: Elsevier
ISBN: 0080929567
Category : Mathematics
Languages : en
Pages : 480

Get Book Here

Book Description
/homepage/sac/cam/na2000/index.html7-Volume Set now available at special set price ! Over the second half of the 20th century the subject area loosely referred to as numerical analysis of partial differential equations (PDEs) has undergone unprecedented development. At its practical end, the vigorous growth and steady diversification of the field were stimulated by the demand for accurate and reliable tools for computational modelling in physical sciences and engineering, and by the rapid development of computer hardware and architecture. At the more theoretical end, the analytical insight into the underlying stability and accuracy properties of computational algorithms for PDEs was deepened by building upon recent progress in mathematical analysis and in the theory of PDEs. To embark on a comprehensive review of the field of numerical analysis of partial differential equations within a single volume of this journal would have been an impossible task. Indeed, the 16 contributions included here, by some of the foremost world authorities in the subject, represent only a small sample of the major developments. We hope that these articles will, nevertheless, provide the reader with a stimulating glimpse into this diverse, exciting and important field. The opening paper by Thomée reviews the history of numerical analysis of PDEs, starting with the 1928 paper by Courant, Friedrichs and Lewy on the solution of problems of mathematical physics by means of finite differences. This excellent survey takes the reader through the development of finite differences for elliptic problems from the 1930s, and the intense study of finite differences for general initial value problems during the 1950s and 1960s. The formulation of the concept of stability is explored in the Lax equivalence theorem and the Kreiss matrix lemmas. Reference is made to the introduction of the finite element method by structural engineers, and a description is given of the subsequent development and mathematical analysis of the finite element method with piecewise polynomial approximating functions. The penultimate section of Thomée's survey deals with `other classes of approximation methods', and this covers methods such as collocation methods, spectral methods, finite volume methods and boundary integral methods. The final section is devoted to numerical linear algebra for elliptic problems. The next three papers, by Bialecki and Fairweather, Hesthaven and Gottlieb and Dahmen, describe, respectively, spline collocation methods, spectral methods and wavelet methods. The work by Bialecki and Fairweather is a comprehensive overview of orthogonal spline collocation from its first appearance to the latest mathematical developments and applications. The emphasis throughout is on problems in two space dimensions. The paper by Hesthaven and Gottlieb presents a review of Fourier and Chebyshev pseudospectral methods for the solution of hyperbolic PDEs. Particular emphasis is placed on the treatment of boundaries, stability of time discretisations, treatment of non-smooth solutions and multidomain techniques. The paper gives a clear view of the advances that have been made over the last decade in solving hyperbolic problems by means of spectral methods, but it shows that many critical issues remain open. The paper by Dahmen reviews the recent rapid growth in the use of wavelet methods for PDEs. The author focuses on the use of adaptivity, where significant successes have recently been achieved. He describes the potential weaknesses of wavelet methods as well as the perceived strengths, thus giving a balanced view that should encourage the study of wavelet methods.

Discontinuous Galerkin Methods

Discontinuous Galerkin Methods PDF Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
ISBN: 3642597211
Category : Mathematics
Languages : en
Pages : 468

Get Book Here

Book Description
A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.

Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment

Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment PDF Author: Zhangxin Chen
Publisher: American Mathematical Soc.
ISBN: 082182807X
Category : Mathematics
Languages : en
Pages : 538

Get Book Here

Book Description
The June 2001 conference brought together mathematicians, computational scientists, and engineers working on the mathematical and numerical treatment of fluid flow and transport in porous media. This collection of 43 papers from that conference reports on recent advances in network flow modeling, parallel computation, optimization, upscaling, uncertainty reduction, media characterization, and chemically reactive phenomena. Topics include modeling horizontal wells using hybrid grids in reservoir simulation, a high order Lagrangian scheme for flow through unsaturated porous media, and a streamline front tracking method for two- and three- phase flow. No index. Annotation copyrighted by Book News, Inc., Portland, OR.

Handbook of Geomathematics

Handbook of Geomathematics PDF Author: Willi Freeden
Publisher: Springer Science & Business Media
ISBN: 364201545X
Category : Mathematics
Languages : en
Pages : 1371

Get Book Here

Book Description
During the last three decades geosciences and geo-engineering were influenced by two essential scenarios: First, the technological progress has changed completely the observational and measurement techniques. Modern high speed computers and satellite based techniques are entering more and more all geodisciplines. Second, there is a growing public concern about the future of our planet, its climate, its environment, and about an expected shortage of natural resources. Obviously, both aspects, viz. efficient strategies of protection against threats of a changing Earth and the exceptional situation of getting terrestrial, airborne as well as spaceborne data of better and better quality explain the strong need of new mathematical structures, tools, and methods. Mathematics concerned with geoscientific problems, i.e., Geomathematics, is becoming increasingly important. The ‘Handbook Geomathematics’ as a central reference work in this area comprises the following scientific fields: (I) observational and measurement key technologies (II) modelling of the system Earth (geosphere, cryosphere, hydrosphere, atmosphere, biosphere) (III) analytic, algebraic, and operator-theoretic methods (IV) statistical and stochastic methods (V) computational and numerical analysis methods (VI) historical background and future perspectives.

A Family of Eulerian-Lagrangian Localized Adjoint Methods for Two-dimensional Transport Equations and Their Error Analyses

A Family of Eulerian-Lagrangian Localized Adjoint Methods for Two-dimensional Transport Equations and Their Error Analyses PDF Author: Shushuang Man
Publisher:
ISBN:
Category :
Languages : en
Pages : 260

Get Book Here

Book Description


Mathematical Reviews

Mathematical Reviews PDF Author:
Publisher:
ISBN:
Category : Mathematics
Languages : en
Pages : 1804

Get Book Here

Book Description


Additive Runge-Kutta Schemes for Convection-diffusion-reaction Equations

Additive Runge-Kutta Schemes for Convection-diffusion-reaction Equations PDF Author: Christopher Alan Kennedy
Publisher:
ISBN:
Category : Differential equations
Languages : en
Pages : 56

Get Book Here

Book Description
Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N=2, additive Runge-Kutta ARK methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK methods have vanishing stability functions for very large values of the stiff scaled eigenvalue and retain high stability efficiency in the absence of stiffness.