A Progrssive [i.e. Progressive] Damage Analysis Including Delamination for Fiber Reinforced Composites

A Progrssive [i.e. Progressive] Damage Analysis Including Delamination for Fiber Reinforced Composites PDF Author: Sivom Manchiraju
Publisher:
ISBN:
Category : Fibrous composites
Languages : en
Pages : 224

Get Book Here

Book Description

A Progrssive [i.e. Progressive] Damage Analysis Including Delamination for Fiber Reinforced Composites

A Progrssive [i.e. Progressive] Damage Analysis Including Delamination for Fiber Reinforced Composites PDF Author: Sivom Manchiraju
Publisher:
ISBN:
Category : Fibrous composites
Languages : en
Pages : 224

Get Book Here

Book Description


Charactarization [sic] and Progressive Damage Analysis of Quasi-three-dimensional Composites

Charactarization [sic] and Progressive Damage Analysis of Quasi-three-dimensional Composites PDF Author: Liangkai Ma
Publisher:
ISBN:
Category : Composite materials
Languages : en
Pages : 348

Get Book Here

Book Description


Damage Modeling of Composite Structures

Damage Modeling of Composite Structures PDF Author: Pengfei Liu
Publisher: Elsevier
ISBN: 0128209631
Category : Technology & Engineering
Languages : en
Pages : 396

Get Book Here

Book Description
Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis provides readers with a fundamental overview of the mechanics of composite materials, along with an outline of an array of modeling and numerical techniques used to analyze damage, failure mechanisms and safety tolerance. Strength prediction and finite element analysis of laminated composite structures are both covered, as are modeling techniques for delaminated composites under compression and shear. Viscoelastic cohesive/friction coupled model and finite element analysis for delamination analysis of composites under shear and for laminates under low-velocity impact are all covered at length. A concluding chapter discusses multiscale damage models and finite element analysis of composite structures. Integrates intralaminar damage and interlaminar delamination under different load patterns, covering intralaminar damage constitutive models, failure criteria, damage evolution laws, and virtual crack closure techniques Discusses numerical techniques for progressive failure analysis and modeling, as well as numerical convergence and mesh sensitivity, thus allowing for more accurate modeling Features models and methods that can be seamlessly extended to analyze failure mechanisms and safety tolerance of composites under more complex loads, and in more extreme environments Demonstrates applications of damage models and numerical methods

Progressive Damage and Delamination in Composites by the Element-Failure Approach and Strain Invariant Failure Theory (SIFT).

Progressive Damage and Delamination in Composites by the Element-Failure Approach and Strain Invariant Failure Theory (SIFT). PDF Author: T. E. Tay
Publisher:
ISBN:
Category :
Languages : en
Pages : 12

Get Book Here

Book Description


The Virtual Crack Closure Technique: History, Approach and Applications

The Virtual Crack Closure Technique: History, Approach and Applications PDF Author: Ronald Krueger
Publisher:
ISBN:
Category :
Languages : en
Pages : 66

Get Book Here

Book Description
An overview of the virtual crack closure technique is presented. The approach used is discussed, the history summarized, and insight into its applications provided. Equations for two-dimensional quadrilateral elements with linear and quadratic shape functions are given. Formula for applying the technique in conjuction with three-dimensional solid elements as well as plate/shell elements are also provided. Necessary modifications for the use of the method with geometrically nonlinear finite element analysis and corrections required for elements at the crack tip with different lengths and widths are discussed. The problems associated with cracks or delaminations propagating between different materials are mentioned briefly, as well as a strategy to minimize these problems. Due to an increased interest in using a fracture mechanics based approach to assess the damage tolerance of composite structures in the design phase and during certification, the engineering problems selected as examples and given as references focus on the application of the technique to components made of composite materials.

Defects and Damage in Composite Materials and Structures

Defects and Damage in Composite Materials and Structures PDF Author: Rikard Benton Heslehurst
Publisher: CRC Press
ISBN: 146658047X
Category : Technology & Engineering
Languages : en
Pages : 216

Get Book Here

Book Description
The advantages of composite materials include a high specific strength and stiffness, formability, and a comparative resistance to fatigue cracking and corrosion. However, not forsaking these advantages, composite materials are prone to a wide range of defects and damage that can significantly reduce the residual strength and stiffness of a structure or result in unfavorable load paths. Emphasizing defect identification and restitution, Defects and Damage in Composite Materials and Structures explains how defects and damage in composite materials and structures impact composite component performance. Providing ready access to an extensive, descriptive list of defects and damage types, this must-have reference: Examines defect criticality in composite structures Recommends repair actions to restore structural integrity Discusses failure modes and mechanisms of composites due to defects Reviews NDI processes for finding and identifying defects in composite materials Relating defect detection methods to defect type, the author merges his experience in the field of in-service activities for composite airframe maintenance and repair with indispensable reports and articles on defects and damage in advanced composite materials from the last 50 years.

A Progressive Damage Methodology for Residual Strength Predictions of Center-Crack Tension Composite Panels

A Progressive Damage Methodology for Residual Strength Predictions of Center-Crack Tension Composite Panels PDF Author: Timothy William Coats
Publisher:
ISBN:
Category : Continuum damage mechanics
Languages : en
Pages : 150

Get Book Here

Book Description


Development of an Engineering Analysis of Progressive Damage in Composites During Low Velocity Impact

Development of an Engineering Analysis of Progressive Damage in Composites During Low Velocity Impact PDF Author: E. A. Humphreys
Publisher:
ISBN:
Category :
Languages : en
Pages : 126

Get Book Here

Book Description


Nonlinear Finite Element Analysis of Solids and Structures

Nonlinear Finite Element Analysis of Solids and Structures PDF Author: René de Borst
Publisher: John Wiley & Sons
ISBN: 1118376013
Category : Technology & Engineering
Languages : en
Pages : 481

Get Book Here

Book Description
Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist René de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature. Key features: Combines the two previous volumes into one heavily revised text with obsolete material removed, an improved layout and updated references and notations Extensive new material on more recent developments in computational mechanics Easily readable, engineering oriented, with no more details in the main text than necessary to understand the concepts. Pseudo-code throughout makes the link between theory and algorithms, and the actual implementation. Accompanied by a website (www.wiley.com/go/deborst) with a Python code, based on the pseudo-code within the book and suitable for solving small-size problems. Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition is an essential reference for practising engineers and researchers that can also be used as a text for undergraduate and graduate students within computational mechanics.

An Isogeometric Analysis Framework for Progressive Damage Modeling of Multi-Layer Composite Materials

An Isogeometric Analysis Framework for Progressive Damage Modeling of Multi-Layer Composite Materials PDF Author: Marco Simone Pigazzini
Publisher:
ISBN:
Category :
Languages : en
Pages : 151

Get Book Here

Book Description
Fiber-reinforced composite materials have become increasingly popular in the past few decades for lightweight applications, in particular in the aerospace industry where high strength-to-weight and high stiffness-to-weight ratio are considered key design parameters. At the same time, new computational technologies are required to support the design process of increasingly complex structural components and to predict damage growth under non-standard loading conditions. However, the development of accurate and computationally efficient analysis tools, capable of predicting the response of laminated composite structures from the elastic regime to the failure point and beyond, is a complex task. Difficulties stem from the inherent heterogeneous nature of fiber-reinforced polymer composite materials and from their multi-modal failure mechanisms. Composite structures optimized for low weight applications are often laminates, consisting of several layers of fiber-reinforced material, called laminae, bonded together. Intra-laminar damage may occur within a given lamina, and inter-laminar damage, or delamination, may occur when bonds between laminae break down. The unique challenges associated with modeling damage in these structures may be addressed by means of thin-shell formulations which is naturally developed in the context of Isogeometric Analysis. This dissertation presents a novel multi-layer modeling framework based on Isogeometric Analysis, where each ply or lamina is represented by a Non-Uniform Rational B-Spline (NURBS) surface, and it is modeled as a Kirchhoff-Love thin shell. A residual stiffness approach is used to model intra-laminar damage in the framework of Continuum Damage Mechanics. A new zero-thickness cohesive interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. The gradient-enhanced continuum damage model is then introduced to regularize material instabilities, which are typically associated with strain-softening damage models. This nonlocal regularization technique aims to re-establish mesh objectivity by limiting the dependence of damage predictions on the choice of discrete mesh. To account for the anisotropic damage modes of laminae, the proposed formulation smooths a tensor-valued strain field by solving an elliptic partial differential equation system on each lamina. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.