Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 303167488X
Category :
Languages : en
Pages : 105
Book Description
A Numerical Approach to the Micromechanics of Fibre-Reinforced Laminae
Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 303167488X
Category :
Languages : en
Pages : 105
Book Description
Publisher: Springer Nature
ISBN: 303167488X
Category :
Languages : en
Pages : 105
Book Description
A Numerical Approach to the Micromechanics of Fibre-Reinforced Laminae
Author: Andreas Öchsner
Publisher: Springer
ISBN: 9783031674877
Category : Science
Languages : en
Pages : 0
Book Description
This book treats the micromechanics of laminae, i.e., the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations. In detail, predictions for the modulus of elasticity in and transverse to the fiber direction, the major Poisson’s ratio, as wells as the in-plane shear modulus are provided. The mechanics of materials approach, the elasticity solutions with contiguity after Tsai, and the Halpin-Tsai relationships, are presented in detail. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical engineering materials. Particularly the combination of a matrix with fibers provides far better properties than the single constituents alone. A typical basic layer, the so-called lamina, can be composed of unidirectional fibers which are embedded in a matrix. In a second step, layers of laminae may be stacked under different fiber angles to a so-called laminate, which reveals—depending on the stacking sequence—different types of anisotropy/isotropy. A Python-based computational tool is provided, the so-called Micromechanics Analysis Tool (MMAT v1.0) to easily predict the elastic properties. The tool runs in any standard web browser and offers a user-friendly interface with many graphical representations of the elastic properties as a function of the fiber volume fraction.
Publisher: Springer
ISBN: 9783031674877
Category : Science
Languages : en
Pages : 0
Book Description
This book treats the micromechanics of laminae, i.e., the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations. In detail, predictions for the modulus of elasticity in and transverse to the fiber direction, the major Poisson’s ratio, as wells as the in-plane shear modulus are provided. The mechanics of materials approach, the elasticity solutions with contiguity after Tsai, and the Halpin-Tsai relationships, are presented in detail. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical engineering materials. Particularly the combination of a matrix with fibers provides far better properties than the single constituents alone. A typical basic layer, the so-called lamina, can be composed of unidirectional fibers which are embedded in a matrix. In a second step, layers of laminae may be stacked under different fiber angles to a so-called laminate, which reveals—depending on the stacking sequence—different types of anisotropy/isotropy. A Python-based computational tool is provided, the so-called Micromechanics Analysis Tool (MMAT v1.0) to easily predict the elastic properties. The tool runs in any standard web browser and offers a user-friendly interface with many graphical representations of the elastic properties as a function of the fiber volume fraction.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 556
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 556
Book Description
Annual Report
Author: Lewis Research Center
Publisher:
ISBN:
Category : Space sciences
Languages : en
Pages : 264
Book Description
Publisher:
ISBN:
Category : Space sciences
Languages : en
Pages : 264
Book Description
A Numerical Approach to the Classical Laminate Theory of Composite Materials
Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3031329759
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This book first provides a systematic and thorough introduction to the classical laminate theory for composite materials based on the theory for plane elasticity elements and classical (shear-rigid) plate elements. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations and their composition to layered laminates. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. The solution of the fundamental equations of the classical laminate theory is connected with extensive matrix operations, and many problems require in addition iteration loops. Thus, a classical hand calculation of related problems is extremely time consuming. In order to facilitate the application of the classical laminate theory, we decided to provide a Python-based computational tool, the so-called Composite Laminate Analysis Tool (CLAT) to easily solve some standard questions from the context of fiber-reinforced composites. The tool runs in any standard web browser and offers a user-friendly interface with many post-processing options. The functionality comprises stress and strain analysis of lamina and laminates, derivation of off-axis elastic properties of lamina, and the failure analysis based on different criteria.
Publisher: Springer Nature
ISBN: 3031329759
Category : Technology & Engineering
Languages : en
Pages : 181
Book Description
This book first provides a systematic and thorough introduction to the classical laminate theory for composite materials based on the theory for plane elasticity elements and classical (shear-rigid) plate elements. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations and their composition to layered laminates. In addition to the elastic behavior, failure is investigated based on the maximum stress, maximum strain, Tsai-Hill, and the Tsai-Wu criteria. The solution of the fundamental equations of the classical laminate theory is connected with extensive matrix operations, and many problems require in addition iteration loops. Thus, a classical hand calculation of related problems is extremely time consuming. In order to facilitate the application of the classical laminate theory, we decided to provide a Python-based computational tool, the so-called Composite Laminate Analysis Tool (CLAT) to easily solve some standard questions from the context of fiber-reinforced composites. The tool runs in any standard web browser and offers a user-friendly interface with many post-processing options. The functionality comprises stress and strain analysis of lamina and laminates, derivation of off-axis elastic properties of lamina, and the failure analysis based on different criteria.
NASA Technical Memorandum
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 230
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 230
Book Description
Annual Report, 1989
Author: Lewis Research Center
Publisher:
ISBN:
Category : Space sciences
Languages : en
Pages : 256
Book Description
Publisher:
ISBN:
Category : Space sciences
Languages : en
Pages : 256
Book Description
Micromechanics of Fiber-Reinforced Laminae
Author: Andreas Öchsner
Publisher: Springer Nature
ISBN: 3030940918
Category : Science
Languages : en
Pages : 60
Book Description
This book provides an introduction to the micromechanics of fiber-reinforced laminae, which deals with the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical metals. Particularly, the combination of a matrix with fibers provides far better properties than the components alone. Despite their importance, many engineering degree programs do not treat the mechanical behavior of this class of advanced structured materials in detail, at least on the Bachelor degree level. Thus, some engineers are not able to thoroughly apply and introduce these modern engineering materials in their design process. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations. Three classical approaches to predict the elastic properties, i.e., the mechanics of materials approach, the elasticity solutions with contiguity after Tsai, and the Halpin–Tsai relationships, are presented. The quality of each prediction is benchmarked based on two different sets of experimental values. The book concludes with optimized representations, which were obtained based on the least square approach for the used experimental data sets.
Publisher: Springer Nature
ISBN: 3030940918
Category : Science
Languages : en
Pages : 60
Book Description
This book provides an introduction to the micromechanics of fiber-reinforced laminae, which deals with the prediction of the macroscopic mechanical lamina properties based on the mechanical properties of the constituents, i.e., fibers and matrix. Composite materials, especially fiber-reinforced composites, are gaining increasing importance since they can overcome the limits of many structures based on classical metals. Particularly, the combination of a matrix with fibers provides far better properties than the components alone. Despite their importance, many engineering degree programs do not treat the mechanical behavior of this class of advanced structured materials in detail, at least on the Bachelor degree level. Thus, some engineers are not able to thoroughly apply and introduce these modern engineering materials in their design process. The focus is on unidirectional lamina which can be described based on orthotropic constitutive equations. Three classical approaches to predict the elastic properties, i.e., the mechanics of materials approach, the elasticity solutions with contiguity after Tsai, and the Halpin–Tsai relationships, are presented. The quality of each prediction is benchmarked based on two different sets of experimental values. The book concludes with optimized representations, which were obtained based on the least square approach for the used experimental data sets.
Principles of Composite Material Mechanics
Author: Ronald F. Gibson
Publisher: CRC Press
ISBN: 1498720722
Category : Science
Languages : en
Pages : 683
Book Description
Principles of Composite Material Mechanics covers a unique blend of classical and contemporary mechanics of composites technologies. It presents analytical approaches ranging from the elementary mechanics of materials to more advanced elasticity and finite element numerical methods, discusses novel materials such as nanocomposites and hybrid multis
Publisher: CRC Press
ISBN: 1498720722
Category : Science
Languages : en
Pages : 683
Book Description
Principles of Composite Material Mechanics covers a unique blend of classical and contemporary mechanics of composites technologies. It presents analytical approaches ranging from the elementary mechanics of materials to more advanced elasticity and finite element numerical methods, discusses novel materials such as nanocomposites and hybrid multis
Handbook of Advances in Braided Composite Materials
Author: Jason P. Carey
Publisher: Elsevier
ISBN: 0443186030
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
There has been a major resurgence of braiding in worldwide manufacturing and new testing technologies using imaging processes are now being employed. This has allowed significant findings and a better understanding of braided materials. The Handbook of Advances in Braided Composite Materials, Second Edition extensively reviews the properties, design, and manufacturing, testing and next generation applications of braided composite materials. Following the introductory chapter and the opening topic of working with the enclosed composite apps, Part One discusses manufacturing processes and advanced testing of braided composite materials. Part Two then looks at predicting properties and designing braided composite materials, including mechanics for braided composite materials such as micromechanics, macromechanics and ply mechanics. Advances in 2D and 3D modeling, as well as design of braided composite materials, are also covered. Finally, Part Three provides information on the applications of Next Generation braided composite materials. These topics consist of shape memory composites, nanostructures in braids, electrospinning, braidtrusion and green braids. The book presents up-to-date technology developments and recent research findings, along with an android and IPhone App to support design criteria, which is available via an online open source platform provided by the editor. Industrial manufacturers of braided composites, academic researchers working in the design and development of braided composites, professional engineers and postgraduate students will find this book an essential read. - Covers new developments in advanced testing methods and imaging technology - Presents new findings in manufacturing and material properties - Discusses new developments in sustainable green braided composites, and in 3D braiding
Publisher: Elsevier
ISBN: 0443186030
Category : Technology & Engineering
Languages : en
Pages : 552
Book Description
There has been a major resurgence of braiding in worldwide manufacturing and new testing technologies using imaging processes are now being employed. This has allowed significant findings and a better understanding of braided materials. The Handbook of Advances in Braided Composite Materials, Second Edition extensively reviews the properties, design, and manufacturing, testing and next generation applications of braided composite materials. Following the introductory chapter and the opening topic of working with the enclosed composite apps, Part One discusses manufacturing processes and advanced testing of braided composite materials. Part Two then looks at predicting properties and designing braided composite materials, including mechanics for braided composite materials such as micromechanics, macromechanics and ply mechanics. Advances in 2D and 3D modeling, as well as design of braided composite materials, are also covered. Finally, Part Three provides information on the applications of Next Generation braided composite materials. These topics consist of shape memory composites, nanostructures in braids, electrospinning, braidtrusion and green braids. The book presents up-to-date technology developments and recent research findings, along with an android and IPhone App to support design criteria, which is available via an online open source platform provided by the editor. Industrial manufacturers of braided composites, academic researchers working in the design and development of braided composites, professional engineers and postgraduate students will find this book an essential read. - Covers new developments in advanced testing methods and imaging technology - Presents new findings in manufacturing and material properties - Discusses new developments in sustainable green braided composites, and in 3D braiding