Author: Charles Castaing
Publisher: Springer Science & Business Media
ISBN: 1402019637
Category : Mathematics
Languages : en
Pages : 327
Book Description
Young measures are now a widely used tool in the Calculus of Variations, in Control Theory, in Probability Theory and other fields. They are known under different names such as "relaxed controls", "fuzzy random variables" and many other names. This monograph provides a unified presentation of the theory, along with new results and applications in various fields. It can serve as a reference on the subject. Young measures are presented in a general setting which includes finite and for the first time infinite dimensional spaces: the fields of applications of Young measures (Control Theory, Calculus of Variations, Probability Theory...) are often concerned with problems in infinite dimensional settings. The theory of Young measures is now well understood in a finite dimensional setting, but open problems remain in the infinite dimensional case. We provide several new results in the general frame, which are new even in the finite dimensional setting, such as characterizations of convergence in measure of Young measures (Chapter 3) and compactness criteria (Chapter 4).These results are established under a different form (and with fewer details and developments) in recent papers by the same authors. We also provide new applications to Visintin and Reshetnyak type theorems (Chapters 6 and 8), existence of solutions to differential inclusions (Chapter 7), dynamical programming (Chapter 8) and the Central Limit Theorem in locally convex spaces (Chapter 9).
Young Measures on Topological Spaces
Author: Charles Castaing
Publisher: Springer Science & Business Media
ISBN: 1402019637
Category : Mathematics
Languages : en
Pages : 327
Book Description
Young measures are now a widely used tool in the Calculus of Variations, in Control Theory, in Probability Theory and other fields. They are known under different names such as "relaxed controls", "fuzzy random variables" and many other names. This monograph provides a unified presentation of the theory, along with new results and applications in various fields. It can serve as a reference on the subject. Young measures are presented in a general setting which includes finite and for the first time infinite dimensional spaces: the fields of applications of Young measures (Control Theory, Calculus of Variations, Probability Theory...) are often concerned with problems in infinite dimensional settings. The theory of Young measures is now well understood in a finite dimensional setting, but open problems remain in the infinite dimensional case. We provide several new results in the general frame, which are new even in the finite dimensional setting, such as characterizations of convergence in measure of Young measures (Chapter 3) and compactness criteria (Chapter 4).These results are established under a different form (and with fewer details and developments) in recent papers by the same authors. We also provide new applications to Visintin and Reshetnyak type theorems (Chapters 6 and 8), existence of solutions to differential inclusions (Chapter 7), dynamical programming (Chapter 8) and the Central Limit Theorem in locally convex spaces (Chapter 9).
Publisher: Springer Science & Business Media
ISBN: 1402019637
Category : Mathematics
Languages : en
Pages : 327
Book Description
Young measures are now a widely used tool in the Calculus of Variations, in Control Theory, in Probability Theory and other fields. They are known under different names such as "relaxed controls", "fuzzy random variables" and many other names. This monograph provides a unified presentation of the theory, along with new results and applications in various fields. It can serve as a reference on the subject. Young measures are presented in a general setting which includes finite and for the first time infinite dimensional spaces: the fields of applications of Young measures (Control Theory, Calculus of Variations, Probability Theory...) are often concerned with problems in infinite dimensional settings. The theory of Young measures is now well understood in a finite dimensional setting, but open problems remain in the infinite dimensional case. We provide several new results in the general frame, which are new even in the finite dimensional setting, such as characterizations of convergence in measure of Young measures (Chapter 3) and compactness criteria (Chapter 4).These results are established under a different form (and with fewer details and developments) in recent papers by the same authors. We also provide new applications to Visintin and Reshetnyak type theorems (Chapters 6 and 8), existence of solutions to differential inclusions (Chapter 7), dynamical programming (Chapter 8) and the Central Limit Theorem in locally convex spaces (Chapter 9).
Variational Methods in Nonlinear Elasticity
Author: Pablo Pedregal
Publisher: SIAM
ISBN: 9780898719529
Category : Science
Languages : en
Pages : 110
Book Description
This book covers the main vector variational methods developed to solve nonlinear elasticity problems. Presenting a general framework with a tight focus, the author provides a comprehensive exposition of a technically difficult, yet rapidly developing area of modern applied mathematics. The book includes the classical existence theory as well as a brief incursion into problems where nonexistence is fundamental. It also provides self-contained, concise accounts of quasi convexity, polyconvexity, and rank-one convexity, which are used in nonlinear elasticity.
Publisher: SIAM
ISBN: 9780898719529
Category : Science
Languages : en
Pages : 110
Book Description
This book covers the main vector variational methods developed to solve nonlinear elasticity problems. Presenting a general framework with a tight focus, the author provides a comprehensive exposition of a technically difficult, yet rapidly developing area of modern applied mathematics. The book includes the classical existence theory as well as a brief incursion into problems where nonexistence is fundamental. It also provides self-contained, concise accounts of quasi convexity, polyconvexity, and rank-one convexity, which are used in nonlinear elasticity.
Continuum Mechanics - Volume III
Author: José Merodio
Publisher: EOLSS Publications
ISBN: 1848263740
Category :
Languages : en
Pages : 388
Book Description
The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.
Publisher: EOLSS Publications
ISBN: 1848263740
Category :
Languages : en
Pages : 388
Book Description
The main objective of continuum mechanics is to predict the response of a body that is under the action of external and/or internal influences, i.e. to capture and describe different mechanisms associated with the motion of a body that is under the action of loading. A body in continuum mechanics is considered to be matter continuously distributed in space. Hence, no attention is given to the microscopic (atomic) structure of real materials although non-classical generalized theories of continuum mechanics are able to deal with the mesoscopic structure of matter (i.e. defects, cracks, dispersive lengths, ...). Matter occupies space in time and the response of a body in continuum mechanics is restricted to the Newtonian space-time of classical mechanics in this volume. Einstein’s theory of relativity is not considered. In the classical sense, loading is considered as any action that changes the motion of the body. This includes, for instance, a change in temperature or a force applied. By introducing the concept of configurational forces a load may also be considered as a force that drives a change in the material space, for example the opening of a crack. Continuum mechanics refers to field descriptions of phenomena that are usually modeled by partial differential equations and, from a mathematical point of view, require non-standard knowledge of non-simple technicalities. One purpose in this volume has been to present the different subjects in a self-contained way for a general audience. The organization of the volume is as follows. Mathematically, to predict the response of a body it is necessary to formulate boundary value problems governed by balance laws. The theme of the volume, that is an overview of the subject, has been written with this idea in mind for beginners in the topic. Chapter 1 is an introduction to continuum mechanics based on a one-dimensional framework in which, simultaneously, a more detailed organization of the chapters of this volume is given. A one-dimensional approach to continuum mechanics in some aspects maybe misleading since the analysis is oversimplified. Nevertheless, it allows us to introduce the subject through the early basic steps of the continuum analysis for a general audience. Chapters 3, 4 and 5 are devoted to the mathematical setting of continuum analysis: kinematics, balance laws and thermodynamics, respectively. Chapters 6 and 7 are devoted to constitutive equations. Chapters 8 and 9 deal with different issues in the context of linear elastostatics and linear elastodynamics and waves, respectively, for solids. Linear Elasticity is a classical and central theory of continuum mechanics. Chapter 10 deals with fluids while chapter 11 analyzes the coupled theory of thermoelasticity. Chapter 12 deals with nonlinear elasticity and its role in the continuum framework. Chapters 13 and 14 are dedicated to different applications of solid and fluid mechanics, respectively. The rest of the chapters involve some advanced topics. Chapter 15 is dedicated to turbulence, one of the main challenges in fluid mechanics. Chapter 16 deals with electro-magneto active materials (a coupled theory). Chapter 17 deals with specific ideas of soft matter and chapter 18 deals with configurational forces. In chapter 19, constitutive equations are introduced in a general (implicit) form. Well-posedness (existence, time of existence, uniqueness, continuity) of the equations of the mechanics of continua is an important topic which involves sophisticated mathematical machinery. Chapter 20 presents different analyses related to these topics. Continuum Mechanics is an interdisciplinary subject that attracts the attention of engineers, mathematicians, physicists, etc., working in many different disciplines from a purely scientific environment to industrial applications including biology, materials science, engineering, and many other subjects.
Optimal Design through the Sub-Relaxation Method
Author: Pablo Pedregal
Publisher: Springer
ISBN: 3319411594
Category : Mathematics
Languages : en
Pages : 139
Book Description
This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book’s final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.
Publisher: Springer
ISBN: 3319411594
Category : Mathematics
Languages : en
Pages : 139
Book Description
This book provides a comprehensive guide to analyzing and solving optimal design problems in continuous media by means of the so-called sub-relaxation method. Though the underlying ideas are borrowed from other, more classical approaches, here they are used and organized in a novel way, yielding a distinct perspective on how to approach this kind of optimization problems. Starting with a discussion of the background motivation, the book broadly explains the sub-relaxation method in general terms, helping readers to grasp, from the very beginning, the driving idea and where the text is heading. In addition to the analytical content of the method, it examines practical issues like optimality and numerical approximation. Though the primary focus is on the development of the method for the conductivity context, the book’s final two chapters explore several extensions of the method to other problems, as well as formal proofs. The text can be used for a graduate course in optimal design, even if the method would require some familiarity with the main analytical issues associated with this type of problems. This can be addressed with the help of the provided bibliography.
Nonlinear Analysis - Theory and Methods
Author: Nikolaos S. Papageorgiou
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
Publisher: Springer
ISBN: 3030034305
Category : Mathematics
Languages : en
Pages : 586
Book Description
This book emphasizes those basic abstract methods and theories that are useful in the study of nonlinear boundary value problems. The content is developed over six chapters, providing a thorough introduction to the techniques used in the variational and topological analysis of nonlinear boundary value problems described by stationary differential operators. The authors give a systematic treatment of the basic mathematical theory and constructive methods for these classes of nonlinear equations as well as their applications to various processes arising in the applied sciences. They show how these diverse topics are connected to other important parts of mathematics, including topology, functional analysis, mathematical physics, and potential theory. Throughout the book a nice balance is maintained between rigorous mathematics and physical applications. The primary readership includes graduate students and researchers in pure and applied nonlinear analysis.
The Interaction of Analysis and Geometry
Author: Victor I. Burenkov
Publisher: American Mathematical Soc.
ISBN: 0821840606
Category : Mathematics
Languages : en
Pages : 354
Book Description
Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."
Publisher: American Mathematical Soc.
ISBN: 0821840606
Category : Mathematics
Languages : en
Pages : 354
Book Description
Based on talks given at the International Conference on Analysis and Geometry in honor of the 75th birthday of Yurii Reshetnyak (Novosibirsk, 2004), this title includes topics such as geometry of spaces with bounded curvature in the sense of Alexandrov, quasiconformal mappings and mappings with bounded distortion, and nonlinear potential theory."
Calculus of Variations
Author: Filip Rindler
Publisher: Springer
ISBN: 3319776371
Category : Mathematics
Languages : en
Pages : 446
Book Description
This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.
Publisher: Springer
ISBN: 3319776371
Category : Mathematics
Languages : en
Pages : 446
Book Description
This textbook provides a comprehensive introduction to the classical and modern calculus of variations, serving as a useful reference to advanced undergraduate and graduate students as well as researchers in the field. Starting from ten motivational examples, the book begins with the most important aspects of the classical theory, including the Direct Method, the Euler-Lagrange equation, Lagrange multipliers, Noether’s Theorem and some regularity theory. Based on the efficient Young measure approach, the author then discusses the vectorial theory of integral functionals, including quasiconvexity, polyconvexity, and relaxation. In the second part, more recent material such as rigidity in differential inclusions, microstructure, convex integration, singularities in measures, functionals defined on functions of bounded variation (BV), and Γ-convergence for phase transitions and homogenization are explored. While predominantly designed as a textbook for lecture courses on the calculus of variations, this book can also serve as the basis for a reading seminar or as a companion for self-study. The reader is assumed to be familiar with basic vector analysis, functional analysis, Sobolev spaces, and measure theory, though most of the preliminaries are also recalled in the appendix.
Journal of analysis and its application
Author:
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 658
Book Description
Publisher:
ISBN:
Category : Mathematical analysis
Languages : en
Pages : 658
Book Description
Geometric Analysis and Nonlinear Partial Differential Equations
Author: Stefan Hildebrandt
Publisher: Springer Science & Business Media
ISBN: 3642556272
Category : Mathematics
Languages : en
Pages : 663
Book Description
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Publisher: Springer Science & Business Media
ISBN: 3642556272
Category : Mathematics
Languages : en
Pages : 663
Book Description
This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.
Geometry, Mechanics, and Dynamics
Author: Paul Newton
Publisher: Springer Science & Business Media
ISBN: 0387217916
Category : Mathematics
Languages : en
Pages : 573
Book Description
Jerry Marsden, one of the world’s pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on “Geometry, Mechanics, and Dynamics”at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry’s in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry’s work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry’s work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether,speakingalanguage which enhances dialogue and encourages cross-fertilization.
Publisher: Springer Science & Business Media
ISBN: 0387217916
Category : Mathematics
Languages : en
Pages : 573
Book Description
Jerry Marsden, one of the world’s pre-eminent mechanicians and applied mathematicians, celebrated his 60th birthday in August 2002. The event was marked by a workshop on “Geometry, Mechanics, and Dynamics”at the Fields Institute for Research in the Mathematical Sciences, of which he wasthefoundingDirector. Ratherthanmerelyproduceaconventionalp- ceedings, with relatively brief accounts of research and technical advances presented at the meeting, we wished to acknowledge Jerry’s in?uence as a teacher, a propagator of new ideas, and a mentor of young talent. Con- quently, starting in 1999, we sought to collect articles that might be used as entry points by students interested in ?elds that have been shaped by Jerry’s work. At the same time we hoped to give experts engrossed in their own technical niches an indication of the wonderful breadth and depth of their subjects as a whole. This book is an outcome of the e?orts of those who accepted our in- tations to contribute. It presents both survey and research articles in the several ?elds that represent the main themes of Jerry’s work, including elasticity and analysis, ?uid mechanics, dynamical systems theory, g- metric mechanics, geometric control theory, and relativity and quantum mechanics. The common thread running through this broad tapestry is the use of geometric methods that serve to unify diverse disciplines and bring a widevarietyofscientistsandmathematicianstogether,speakingalanguage which enhances dialogue and encourages cross-fertilization.