Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method PDF Author: Alexander Grohsjean
Publisher: Springer Science & Business Media
ISBN: 364214070X
Category : Science
Languages : en
Pages : 155

Get Book Here

Book Description
The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method

Measurement of the Top Quark Mass in the Dilepton Final State Using the Matrix Element Method PDF Author: Alexander Grohsjean
Publisher: Springer Science & Business Media
ISBN: 364214070X
Category : Science
Languages : en
Pages : 155

Get Book Here

Book Description
The main pacemakers of scienti?c research are curiosity, ingenuity, and a pinch of persistence. Equipped with these characteristics a young researcher will be s- cessful in pushing scienti?c discoveries. And there is still a lot to discover and to understand. In the course of understanding the origin and structure of matter it is now known that all matter is made up of six types of quarks. Each of these carry a different mass. But neither are the particular mass values understood nor is it known why elementary particles carry mass at all. One could perhaps accept some small generic mass value for every quark, but nature has decided differently. Two quarks are extremely light, three more have a somewhat typical mass value, but one quark is extremely massive. It is the top quark, the heaviest quark and even the heaviest elementary particle that we know, carrying a mass as large as the mass of three iron nuclei. Even though there exists no explanation of why different particle types carry certain masses, the internal consistency of the currently best theory—the standard model of particle physics—yields a relation between the masses of the top quark, the so-called W boson, and the yet unobserved Higgs particle. Therefore, when one assumes validity of the model, it is even possible to take precise measurements of the top quark mass to predict the mass of the Higgs (and potentially other yet unobserved) particles.

First Measurement of the Running of the Top Quark Mass

First Measurement of the Running of the Top Quark Mass PDF Author: Matteo M. Defranchis
Publisher: Springer Nature
ISBN: 3030903761
Category : Science
Languages : en
Pages : 170

Get Book Here

Book Description
In this thesis, the first measurement of the running of the top quark mass is presented. This is a fundamental quantum effect that had never been studied before. Any deviation from the expected behaviour can be interpreted as a hint of the presence of physics beyond the Standard Model. All relevant aspects of the analysis are extensively described and documented. This thesis also describes a simultaneous measurement of the inclusive top quark-antiquark production cross section and the top quark mass in the simulation. The measured cross section is also used to precisely determine the values of the top quark mass and the strong coupling constant by comparing to state-of-the-art theoretical predictions. All the theoretical and experimental aspects relevant to the results presented in this thesis are discussed in the initial chapters in a concise but complete way, which makes the material accessible to a wider audience.

A Measurement of the Top Quark Mass

A Measurement of the Top Quark Mass PDF Author: Kirsten Anne Tollefson
Publisher:
ISBN:
Category :
Languages : en
Pages : 270

Get Book Here

Book Description


انشقاق الثوار

انشقاق الثوار PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description


Measurement of the Top Quark Mass

Measurement of the Top Quark Mass PDF Author: Tzu-Chung Frank Hsieh
Publisher:
ISBN:
Category :
Languages : en
Pages : 292

Get Book Here

Book Description


A Precision Measurement of the Top Quark Mass

A Precision Measurement of the Top Quark Mass PDF Author: Kevin Matthew Black
Publisher:
ISBN:
Category :
Languages : en
Pages : 226

Get Book Here

Book Description
This dissertation describes the measurement of the top quark mass using events recorded during a {approx} 230 pb{sup -1} exposure of the D0 detector to proton-anti-proton (p{bar p}) collisions at a center of mass energy of 1.96 TeV. The Standard Model of particle physics predicts that the top quark will decay into a bottom quark and a W boson close to 100% of the time. The bottom quark will hadronize (bind with another quark) and produce a jet of hadronic particles. The W bosons can decay either into a charged lepton and a neutrino or a pair of quarks. this dissertation focuses on the top quark (t{bar t}) events in which one W decays hadronically and the other decays leptonically. Two methods of identifying t{bar t} events from the large number of events produced are used. The first is based on the unique topology of the final state particles of a heavy particle. By using the topological information of the event, the t{bar t} events can be efficiently extracted from the background. The second method relies on the identification of the remnants of the long lived bottom quarks that are expected to be produced in the decay of almost every top quark. Because the largest background processes do not contain bottom quarks, this is an extremely efficient way to select the events retaining about 60% of the t{bar t} events and removing almost 90% of the background. A kinematic fit to the top quark mass is performed on the t{bar t} candidate events using the final state particles that are seen in the detector. A likelihood technique is then used to extract the most likely value of the top quark mass, m{sub t}, and signal fraction. The result for the topological selection is m{sub t} = 169.9 {+-} 5.8(statistical){sub -7.8}{sup +8.0}(systematic) GeV while the results on the sample selected from identification of a b quark in the event is m{sub t} = 170.6 {+-} 4.2(statistical){sub -6.8}{sup +6.3}(systematic) GeV.

A Measurement of the Top Quark Mass with a Matrix Element Method

A Measurement of the Top Quark Mass with a Matrix Element Method PDF Author: Adam Paul Gibson
Publisher:
ISBN:
Category :
Languages : en
Pages : 400

Get Book Here

Book Description


Precision Measurements of the Top Quark Mass and Width with the D0 Detector

Precision Measurements of the Top Quark Mass and Width with the D0 Detector PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Get Book Here

Book Description
Since the discovery of the top quark in 1995 at the Fermliab Tevatron Collider, top quark properties have been measured with ever higher precision. In this article, recent measurements of the top quark mass and its width using up to 3.6 fb−1 of D0 data are summarized. Different techniques and final states have been examined and no deviations within these measurements have been observed. In addition to the direct measurements, a measurement of the top quark mass from its production cross section and a measurement of the top-antitop quark mass difference are discussed. With a mass of 173.3 ± 1.1 GeV, the top quark is the heaviest of all known fundamental particles. Due to the high mass, its Yukawa coupling is close to unity suggesting that it may play a special role in electroweak symmetry breaking. Precise measurements of both, the W boson and the top quark mass, constrain the mass of the yet unobserved Higgs boson and allow to restrict certain extensions of the Standard Model. At the Tevatron collider with a center-of-mass energy of 1.96 TeV, 85% of the top quark pairs are produced in quark-antiquark annihilation; 15% originate from gluon fusion. Top quarks are predicted to decay almost exclusively to a W boson and a bottom quark. According to the number of hadronic W decays, top events are classified into all-jets, lepton+jets and dilepton events. The lepton+jets channel is characterized by four jets, one isolated, energetic charged lepton and missing transverse energy. With 30%, the branching fraction of the lepton+jets channel is about seven times larger than the one of the dilepton channel whereas the signal to background ratio is about three times smaller. The main background in this final state comes from W +jets events. Instrumental background arises from events in which a jet is misidentified as an electron and events with heavy hadrons that decay into leptons which pass the isolation requirements. The topology of the dilepton channel is described by two jets, two isolated, energetic charged leptons and significant missing transverse energy from the undetected neutrinos. The main background are Z + jets and diboson events (WW/WZ/ZZ+jets) as well as instrumental background as characterized above. At the D0 experiment, different techniques are used to measure the top quark mass. They are summarized in the following sections together with the first measurement of the top anti-top quark mass difference and the first precise determination of the top quark width.

Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron

Measurement of the Top Quark Mass in the All Hadronic Channel at the Tevatron PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Get Book Here

Book Description
This study presents a measurement of the top quark mass in the all hadronic channel of the top quark pair production mechanism, using 1 fb-1 of pp collisions at s =1.96 TeV collected at the Collider Detector at Fermilab (CDF). Few novel techniques have been used in this measurement. A template technique was used to simultaneously determine the mass of the top quark and the energy scale of the jets. Two sets of distributions have been parameterized as a function of the top quark mass and jet energy scale. One set of distributions is built from the event-by-event reconstructed top masses, determined using the Standard Model matrix element for the tt all hadronic process. This set is sensitive to changes in the value of the top quark mass. The other set of distributions is sensitive to changes in the scale of jet energies and is built from the invariant mass of pairs of light flavor jets, providing an in situ calibration of the jet energy scale. The energy scale of the measured jets in the final state is expressed in units of its uncertainty, sigmac. The measured mass of the top quark is 171.1+/-3.7(stat.unc.)+/-2.1(syst.unc.) GeV/c 2 and to the date represents the most precise mass measurement in the all hadronic channel and third best overall.

Top Quark Mass Measurements

Top Quark Mass Measurements PDF Author: A. P. Heinson
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Get Book Here

Book Description
First observed in 1995, the top quark is one of a pair of third-generation quarks in the Standard Model of particle physics. It has charge +2/3e and a mass of 171.4 GeV, about 40 times heavier than its partner, the bottom quark. The CDF and D0 collaborations have identified several hundred events containing the decays of top-antitop pairs in the large dataset collected at the Tevatron proton-antiproton collider over the last four years. They have used these events to measure the top quark's mass to nearly 1% precision and to study other top quark properties. The mass of the top quark is a fundamental parameter of the Standard Model, and knowledge of its value with small uncertainty allows us to predict properties of the as-yet-unobserved Higgs boson. This paper presents the status of the measurements of the top quark mass.