Author: Vladimir Kopta
Publisher: CRC Press
ISBN: 1000794490
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
Over the past two decades we have witnessed the increasing popularity of the internet of things. The vision of billions of connected objects, able to interact with their environment, is the key driver directing the development of future communication devices. Today, power consumption as well as the cost and size of radios remain some of the key obstacles towards fulfilling this vision. Ultra-Low Power FM-UWB Transceivers for IoT presents the latest developments in the field of low power wireless communication. It promotes the FM-UWB modulation scheme as a candidate for short range communication in different IoT scenarios. The FM-UWB has the potential to provide exactly what is missing today. This spread spectrum technique enables significant reduction in transceiver complexity, making it smaller, cheaper and more energy efficient than most alternative options. The book provides an overview of both circuit-level and architectural techniques used in low power radio design, with a comprehensive study of state-of-the-art examples. It summarizes key theoretical aspects of FM-UWB with a glimpse at potential future research directions. Finally, it gives an insight into a full FM-UWB transceiver design, from system level specifications down to transistor level design, demonstrating the modern power reduction circuit techniques. Ultra-Low Power FM-UWB Transceivers for IoT is a perfect text and reference for engineers working in RF IC design and wireless communication, as well as academic staff and graduate students engaged in low power communication systems research.
Ultra-Low Power FM-UWB Transceivers for IoT
Author: Vladimir Kopta
Publisher: CRC Press
ISBN: 1000794490
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
Over the past two decades we have witnessed the increasing popularity of the internet of things. The vision of billions of connected objects, able to interact with their environment, is the key driver directing the development of future communication devices. Today, power consumption as well as the cost and size of radios remain some of the key obstacles towards fulfilling this vision. Ultra-Low Power FM-UWB Transceivers for IoT presents the latest developments in the field of low power wireless communication. It promotes the FM-UWB modulation scheme as a candidate for short range communication in different IoT scenarios. The FM-UWB has the potential to provide exactly what is missing today. This spread spectrum technique enables significant reduction in transceiver complexity, making it smaller, cheaper and more energy efficient than most alternative options. The book provides an overview of both circuit-level and architectural techniques used in low power radio design, with a comprehensive study of state-of-the-art examples. It summarizes key theoretical aspects of FM-UWB with a glimpse at potential future research directions. Finally, it gives an insight into a full FM-UWB transceiver design, from system level specifications down to transistor level design, demonstrating the modern power reduction circuit techniques. Ultra-Low Power FM-UWB Transceivers for IoT is a perfect text and reference for engineers working in RF IC design and wireless communication, as well as academic staff and graduate students engaged in low power communication systems research.
Publisher: CRC Press
ISBN: 1000794490
Category : Technology & Engineering
Languages : en
Pages : 224
Book Description
Over the past two decades we have witnessed the increasing popularity of the internet of things. The vision of billions of connected objects, able to interact with their environment, is the key driver directing the development of future communication devices. Today, power consumption as well as the cost and size of radios remain some of the key obstacles towards fulfilling this vision. Ultra-Low Power FM-UWB Transceivers for IoT presents the latest developments in the field of low power wireless communication. It promotes the FM-UWB modulation scheme as a candidate for short range communication in different IoT scenarios. The FM-UWB has the potential to provide exactly what is missing today. This spread spectrum technique enables significant reduction in transceiver complexity, making it smaller, cheaper and more energy efficient than most alternative options. The book provides an overview of both circuit-level and architectural techniques used in low power radio design, with a comprehensive study of state-of-the-art examples. It summarizes key theoretical aspects of FM-UWB with a glimpse at potential future research directions. Finally, it gives an insight into a full FM-UWB transceiver design, from system level specifications down to transistor level design, demonstrating the modern power reduction circuit techniques. Ultra-Low Power FM-UWB Transceivers for IoT is a perfect text and reference for engineers working in RF IC design and wireless communication, as well as academic staff and graduate students engaged in low power communication systems research.
Ultra Low Power Transceiver for Wireless Body Area Networks
Author: Jens Masuch
Publisher: Springer Science & Business Media
ISBN: 3319000985
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Wireless Body Area Networks (WBANs) are expected to promote new applications for the ambulatory health monitoring of chronic patients and elderly population, aiming to improve their quality of life and independence. These networks are composed by wireless sensor nodes (WSNs) used for measuring physiological variables (e.g., glucose level in blood or body temperature) or controlling therapeutic devices (e.g., implanted insulin pumps). These nodes should exhibit a high degree of energy autonomy in order to extend their battery lifetime or even make the node supply to rely on harvesting techniques. Typically, the power budget of WSNs is dominated by the wireless link and, hence, many efforts have been directed during the last years toward the implementation of power efficient transceivers. Because of the short range (typically no more than a few meters) and low data rate (typically in between 10 kb/s and 1 Mb/s), simple communication protocols can be employed. One of these protocols, specifically tailored for WBAN applications, is the Bluetooth low energy (BLE) standard. This book describes the challenges and solutions for the design of ultra-low power transceivers for WBANs applications and presents the implementation details of a BLE transceiver prototype. Coverage includes not only the main concepts and architectures for achieving low power consumption, but also the details of the circuit design and its implementation in a standard CMOS technology.
Publisher: Springer Science & Business Media
ISBN: 3319000985
Category : Technology & Engineering
Languages : en
Pages : 126
Book Description
Wireless Body Area Networks (WBANs) are expected to promote new applications for the ambulatory health monitoring of chronic patients and elderly population, aiming to improve their quality of life and independence. These networks are composed by wireless sensor nodes (WSNs) used for measuring physiological variables (e.g., glucose level in blood or body temperature) or controlling therapeutic devices (e.g., implanted insulin pumps). These nodes should exhibit a high degree of energy autonomy in order to extend their battery lifetime or even make the node supply to rely on harvesting techniques. Typically, the power budget of WSNs is dominated by the wireless link and, hence, many efforts have been directed during the last years toward the implementation of power efficient transceivers. Because of the short range (typically no more than a few meters) and low data rate (typically in between 10 kb/s and 1 Mb/s), simple communication protocols can be employed. One of these protocols, specifically tailored for WBAN applications, is the Bluetooth low energy (BLE) standard. This book describes the challenges and solutions for the design of ultra-low power transceivers for WBANs applications and presents the implementation details of a BLE transceiver prototype. Coverage includes not only the main concepts and architectures for achieving low power consumption, but also the details of the circuit design and its implementation in a standard CMOS technology.
Ultra-Wideband and 60 GHz Communications for Biomedical Applications
Author: Mehmet R. Yuce
Publisher: Springer Science & Business Media
ISBN: 1461488966
Category : Medical
Languages : en
Pages : 265
Book Description
This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in-body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines.
Publisher: Springer Science & Business Media
ISBN: 1461488966
Category : Medical
Languages : en
Pages : 265
Book Description
This book investigates the design of devices, systems, and circuits for medical applications using the two recently established frequency bands: ultra-wideband (3.1-10.6 GHz) and 60 GHz ISM band. These two bands provide the largest bandwidths available for communication technologies and present many attractive opportunities for medical applications. The applications of these bands in healthcare are wireless body area network (WBAN), medical imaging, biomedical sensing, wearable and implantable devices, fast medical device connectivity, video data transmission, and vital signs monitoring. The recent technological advances and developments proposed or used in medicine based on these two bands are covered. The book introduces possible solutions and design techniques to efficiently implement these systems in medical environment. All individual chapters are written by leading experts in their fields. Contributions by authors are on various applications of ultra-wideband and the 60 GHz ISM band including circuit implementation, UWB and 60 GHz signal transmission around and in-body, antenna design solution, hardware implementation of body sensors, UWB transceiver design, 60 GHz transceiver design, UWB radar for contactless respiratory monitoring, and ultra-wideband based medical Imaging. The book will be a key resource for medical professionals, bio-medical engineers, and graduate and senior undergraduate students in computer, electrical, electronic and biomedical engineering disciplines.
Design of Ultra-Low Power Impulse Radios
Author: Alyssa Apsel
Publisher: Springer Science & Business Media
ISBN: 1461418453
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead. This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs. Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.
Publisher: Springer Science & Business Media
ISBN: 1461418453
Category : Technology & Engineering
Languages : en
Pages : 159
Book Description
This book covers the fundamental principles behind the design of ultra-low power radios and how they can form networks to facilitate a variety of applications within healthcare and environmental monitoring, since they may operate for years off a small battery or even harvest energy from the environment. These radios are distinct from conventional radios in that they must operate with very constrained resources and low overhead. This book provides a thorough discussion of the challenges associated with designing radios with such constrained resources, as well as fundamental design concepts and practical approaches to implementing working designs. Coverage includes integrated circuit design, timing and control considerations, fundamental theory behind low power and time domain operation, and network/communication protocol considerations.
A Baseband, Impulse Ultra-wideband Transceiver Front-end for Low Power Applications
Author: Ian David O'Donnell
Publisher:
ISBN:
Category :
Languages : en
Pages : 560
Book Description
Interest in indoor wireless communications has been increasing. In addition to high throughput WLAN systems such as 802.11a/b/g/n, attention is also being focused on lower rate, short distance systems such as Bluetooth and Zigbee. These low rate radios are being proposed for a variety of applications including automation/security, smart toys, remote sensing/control, asset tracking, and as a replacement for computer peripheral wires. While not demanding aggressive throughput, these radios do require low cost, power efficient operation and optionally the ability to perform ranging. Unfortunately, currently reported radios are up to an order of magnitude away from these power and cost targets or do not support ranging. However, a recent ruling from the FCC has opened up nearly 8GHz of unlicensed spectrum (from dc to 960MHz and from 3.1GHz to 10.6GHz) for ultra-wideband (UWB) deployment. One attractive method of UWB signaling that seems suited to a low power, highly integrated implementation communicates with short pulses, on the order of a nanosecond, that spread energy over at least 500MHz of bandwidth. Termed "impulse-UWB," the baseband nature of this signaling promises low cost and low power consumption through design simplicity, pulsed (or "duty-cycled") operation, and a "mostly-digital" implementation. The benefits of this approach are balanced by the risk of jamming from in-band interference, of stricter sampling and gain constraints, and of increased digital complexity. This dissertation presents the system exploration, specification, design, and demonstration of a low power, highly integrated, flexible, baseband, impulse ultra-wideband transceiver front-end.
Publisher:
ISBN:
Category :
Languages : en
Pages : 560
Book Description
Interest in indoor wireless communications has been increasing. In addition to high throughput WLAN systems such as 802.11a/b/g/n, attention is also being focused on lower rate, short distance systems such as Bluetooth and Zigbee. These low rate radios are being proposed for a variety of applications including automation/security, smart toys, remote sensing/control, asset tracking, and as a replacement for computer peripheral wires. While not demanding aggressive throughput, these radios do require low cost, power efficient operation and optionally the ability to perform ranging. Unfortunately, currently reported radios are up to an order of magnitude away from these power and cost targets or do not support ranging. However, a recent ruling from the FCC has opened up nearly 8GHz of unlicensed spectrum (from dc to 960MHz and from 3.1GHz to 10.6GHz) for ultra-wideband (UWB) deployment. One attractive method of UWB signaling that seems suited to a low power, highly integrated implementation communicates with short pulses, on the order of a nanosecond, that spread energy over at least 500MHz of bandwidth. Termed "impulse-UWB," the baseband nature of this signaling promises low cost and low power consumption through design simplicity, pulsed (or "duty-cycled") operation, and a "mostly-digital" implementation. The benefits of this approach are balanced by the risk of jamming from in-band interference, of stricter sampling and gain constraints, and of increased digital complexity. This dissertation presents the system exploration, specification, design, and demonstration of a low power, highly integrated, flexible, baseband, impulse ultra-wideband transceiver front-end.
FM-UWB Transceivers for Autonomous Wireless Systems
Author: Nitz Saputra
Publisher: CRC Press
ISBN: 100079931X
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
Significant research effort has been devoted to the study and realization of autonomous wireless systems for wireless sensor and personal-area networking, the internet of things, and machine-to-machine communications. Low-power RF integrated circuits, an energy harvester and a power management circuit are fundamental elements of these systems. An FM-UWB Transceiver for Autonomous Wireless Systems presents state-of-the-art developments in low-power FM-UWB transceiver realizations. The design, performance and implementation of prototype transceivers in CMOS technology are presented. A working hardware realization of an autonomous node that includes a prototype power management circuit is also proposed and detailed in this book.Technical topics include: Low-complexity FM-UWB modulation schemesLow-power FM-UWB transceiver prototypes in CMOS technologyCMOS on-chip digital calibration techniquesSolar power harvester and power management in CMOS for low-power RF circuitsAn FM-UWB Transceiver for Autonomous Wireless Systems is an ideal text and reference for engineers working in wireless communication industries, as well as academic staff and graduate students engaged in electrical engineering and communication systems research.
Publisher: CRC Press
ISBN: 100079931X
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
Significant research effort has been devoted to the study and realization of autonomous wireless systems for wireless sensor and personal-area networking, the internet of things, and machine-to-machine communications. Low-power RF integrated circuits, an energy harvester and a power management circuit are fundamental elements of these systems. An FM-UWB Transceiver for Autonomous Wireless Systems presents state-of-the-art developments in low-power FM-UWB transceiver realizations. The design, performance and implementation of prototype transceivers in CMOS technology are presented. A working hardware realization of an autonomous node that includes a prototype power management circuit is also proposed and detailed in this book.Technical topics include: Low-complexity FM-UWB modulation schemesLow-power FM-UWB transceiver prototypes in CMOS technologyCMOS on-chip digital calibration techniquesSolar power harvester and power management in CMOS for low-power RF circuitsAn FM-UWB Transceiver for Autonomous Wireless Systems is an ideal text and reference for engineers working in wireless communication industries, as well as academic staff and graduate students engaged in electrical engineering and communication systems research.
Ultra Wideband
Author: Mohammad Abdul Matin
Publisher: BoD – Books on Demand
ISBN: 953510781X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations.
Publisher: BoD – Books on Demand
ISBN: 953510781X
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations.
Wireless Technologies
Author: Krzysztof Iniewski
Publisher: CRC Press
ISBN: 0849379970
Category : Technology & Engineering
Languages : en
Pages : 696
Book Description
Advanced concepts for wireless technologies present a vision of technology that is embedded in our surroundings and practically invisible. From established radio techniques like GSM, 802.11 or Bluetooth to more emerging technologies, such as Ultra Wide Band and smart dust motes, a common denominator for future progress is the underlying integrated circuit technology. Wireless Technologies responds to the explosive growth of standard cellular radios and radically different wireless applications by presenting new architectural and circuit solutions engineers can use to solve modern design problems. This reference addresses state-of-the art CMOS design in the context of emerging wireless applications, including 3G/4G cellular telephony, wireless sensor networks, and wireless medical application. Written by top international experts specializing in both the IC industry and academia, this carefully edited work uncovers new design opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. The book is divided into three sections: wireless system perspectives, chip architecture and implementation issues, and devices and technologies used to fabricate wireless integrated circuits. Contributors address key issues in the development of future silicon-based systems, such as scale of integration, ultra-low power dissipation, and the integration of heterogeneous circuit design style and processes onto one substrate. Wireless sensor network systems are now being applied in critical applications in commerce, healthcare, and security. This reference, which contains 25 practical and scientifically rigorous articles, provides the knowledge communications engineers need to design innovative methodologies at the circuit and system level.
Publisher: CRC Press
ISBN: 0849379970
Category : Technology & Engineering
Languages : en
Pages : 696
Book Description
Advanced concepts for wireless technologies present a vision of technology that is embedded in our surroundings and practically invisible. From established radio techniques like GSM, 802.11 or Bluetooth to more emerging technologies, such as Ultra Wide Band and smart dust motes, a common denominator for future progress is the underlying integrated circuit technology. Wireless Technologies responds to the explosive growth of standard cellular radios and radically different wireless applications by presenting new architectural and circuit solutions engineers can use to solve modern design problems. This reference addresses state-of-the art CMOS design in the context of emerging wireless applications, including 3G/4G cellular telephony, wireless sensor networks, and wireless medical application. Written by top international experts specializing in both the IC industry and academia, this carefully edited work uncovers new design opportunities in body area networks, medical implants, satellite communications, automobile radar detection, and wearable electronics. The book is divided into three sections: wireless system perspectives, chip architecture and implementation issues, and devices and technologies used to fabricate wireless integrated circuits. Contributors address key issues in the development of future silicon-based systems, such as scale of integration, ultra-low power dissipation, and the integration of heterogeneous circuit design style and processes onto one substrate. Wireless sensor network systems are now being applied in critical applications in commerce, healthcare, and security. This reference, which contains 25 practical and scientifically rigorous articles, provides the knowledge communications engineers need to design innovative methodologies at the circuit and system level.
Design of CMOS RFIC Ultra-Wideband Impulse Transmitters and Receivers
Author: Cam Nguyen
Publisher: Springer
ISBN: 3319531077
Category : Technology & Engineering
Languages : en
Pages : 118
Book Description
This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets. The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of UWB systems including UWB advantages and applications, signals, basic modulations, transmitter and receiver frontends, and antennas. The fourth chapter addresses the design of UWB transmitters including an overview of basic components, design of pulse generator, BPSK modulator design, and design of a UWB tunable transmitter. Chapter 5 presents the design of UWB receivers including the design of UWB low-noise amplifiers, correlators, and a UWB 1 receiver. Chapter 6 covers the design of a UWB uniplanar antenna. Finally, a summary and conclusion is given in Chapter 7.
Publisher: Springer
ISBN: 3319531077
Category : Technology & Engineering
Languages : en
Pages : 118
Book Description
This book presents the design of ultra-wideband (UWB) impulse-based transmitter and receiver frontends, operating within the 3.1-10.6 GHz frequency band, using CMOS radio-frequency integrated-circuits (RFICs). CMOS RFICs are small, cheap, low power devices, better suited for direct integration with digital ICs as compared to those using III-V compound semiconductor devices. CMOS RFICs are thus very attractive for RF systems and, in fact, the principal choice for commercial wireless markets. The book comprises seven chapters. The first chapter gives an introduction to UWB technology and outlines its suitability for high resolution sensing and high-rate, short-range ad-hoc networking and communications. The second chapter provides the basics of CMOS RFICs needed for the design of the UWB RFIC transmitter and receiver presented in this book. It includes the design fundamentals, lumped and distributed elements for RFIC, layout, post-layout simulation, and measurement. The third chapter discusses the basics of UWB systems including UWB advantages and applications, signals, basic modulations, transmitter and receiver frontends, and antennas. The fourth chapter addresses the design of UWB transmitters including an overview of basic components, design of pulse generator, BPSK modulator design, and design of a UWB tunable transmitter. Chapter 5 presents the design of UWB receivers including the design of UWB low-noise amplifiers, correlators, and a UWB 1 receiver. Chapter 6 covers the design of a UWB uniplanar antenna. Finally, a summary and conclusion is given in Chapter 7.
Silicon-Based RF Front-Ends for Ultra Wideband Radios
Author: Aminghasem Safarian
Publisher: Springer Science & Business Media
ISBN: 1402067224
Category : Technology & Engineering
Languages : en
Pages : 97
Book Description
A comprehensive study of silicon-based distributed architectures in wideband circuits are presented in this book. Novel circuit architectures for ultra-wideband (UWB) wireless technologies are described. The book begins with an introduction of several transceiver architectures for UWB. The discussion then focuses on RF front-end of the UWB radio. Therefore, the book will be of interest to RF circuit designers and students.
Publisher: Springer Science & Business Media
ISBN: 1402067224
Category : Technology & Engineering
Languages : en
Pages : 97
Book Description
A comprehensive study of silicon-based distributed architectures in wideband circuits are presented in this book. Novel circuit architectures for ultra-wideband (UWB) wireless technologies are described. The book begins with an introduction of several transceiver architectures for UWB. The discussion then focuses on RF front-end of the UWB radio. Therefore, the book will be of interest to RF circuit designers and students.