A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines

A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 28

Get Book Here

Book Description


Stabilization and Dynamic of Premixed Swirling Flames

Stabilization and Dynamic of Premixed Swirling Flames PDF Author: Paul Palies
Publisher: Academic Press
ISBN: 0128199970
Category : Technology & Engineering
Languages : en
Pages : 402

Get Book Here

Book Description
Stabilization and Dynamic of Premixed Swirling Flames: Prevaporized, Stratified, Partially, and Fully Premixed Regimes focuses on swirling flames in various premixed modes (stratified, partially, fully, prevaporized) for the combustor, and development and design of current and future swirl-stabilized combustion systems. This includes predicting capabilities, modeling of turbulent combustion, liquid fuel modeling, and a complete overview of stabilization of these flames in aeroengines. The book also discusses the effects of the operating envelope on upstream fresh gases and the subsequent impact of flame speed, combustion, and mixing, the theoretical framework for flame stabilization, and fully lean premixed injector design. Specific attention is paid to ground gas turbine applications, and a comprehensive review of stabilization mechanisms for premixed, partially-premixed, and stratified premixed flames. The last chapter covers the design of a fully premixed injector for future jet engine applications. Features a complete view of the challenges at the intersection of swirling flame combustors, their requirements, and the physics of fluids at work Addresses the challenges of turbulent combustion modeling with numerical simulations Includes the presentation of the very latest numerical results and analyses of flashback, lean blowout, and combustion instabilities Covers the design of a fully premixed injector for future jet engine applications

Gas Turbine Emissions

Gas Turbine Emissions PDF Author: Tim C. Lieuwen
Publisher: Cambridge University Press
ISBN: 1107244242
Category : Technology & Engineering
Languages : en
Pages : 385

Get Book Here

Book Description
The development of clean, sustainable energy systems is one of the pre-eminent issues of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage, and gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source. The book has three sections: the first section reviews major issues with gas turbine combustion, including design approaches and constraints, within the context of emissions. The second section addresses fundamental issues associated with pollutant formation, modeling, and prediction. The third section features case studies from manufacturers and technology developers, emphasizing the system-level and practical issues that must be addressed in developing different types of gas turbines that emit pollutants at acceptable levels.

Research & Technology 2001

Research & Technology 2001 PDF Author:
Publisher: DIANE Publishing
ISBN: 1428918213
Category :
Languages : en
Pages : 251

Get Book Here

Book Description


Optical Metrology for Fluids, Combustion and Solids

Optical Metrology for Fluids, Combustion and Solids PDF Author: Carolyn Mercer
Publisher: Springer Science & Business Media
ISBN: 1475737777
Category : Science
Languages : en
Pages : 468

Get Book Here

Book Description
Optical Metrology for Fluids, Combustion and Solids is the first practical handbook that presents the assemblage of the techniques necessary to provide a basic understanding of optical measurement for fluids, combustion, and solids. The use of light as a measurement tool has grown over the past twenty years from a narrowly specialized activity to a mainstay of modern research today. Until recently, the knowledge that could be extracted from the light interaction of light with physical objects was limited to specialized activities. The invention of the laser, the computer and microelectronics has enabled a measurement revolution such that virtually every parameter of engineering interest can be measured using the minimally intrusive properties of light. The authors of this book's chapters are leaders in this revolution. They work on the front lines of research in government, industry, and universities, inventing yet more ways to harness the power of light for the generation of knowledge.

Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines

Active Control of High Frequency Combustion Instability in Aircraft Gas-Turbine Engines PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Get Book Here

Book Description


Structure, Stability and Emissions of Lean Direct Injection Combustion, Including a Novel Multi-point Ldi System for Nox Reduction

Structure, Stability and Emissions of Lean Direct Injection Combustion, Including a Novel Multi-point Ldi System for Nox Reduction PDF Author: Rodrigo Villalva Gómez
Publisher:
ISBN:
Category :
Languages : en
Pages : 288

Get Book Here

Book Description
Experimental research on lean direct injection (LDI) combustors for gas turbine applications is presented. LDI combustion is an alternative to lean premixed combustion which has the potential of equivalent reduction of oxides of nitrogen (NOx) emissions and of peak combustor exit temperatures, but without some drawbacks of premixed combustors, such as flashback and autoignition. Simultaneous observations of the velocity field and reaction zone of an LDI swirl-stabilized combustor with a mixing tube at atmospheric conditions, with the goal of studying the flame stabilization mechanism, are shown. The flame was consistently anchored at the shear layer formed by the high-speed reactants exiting the mixing tube and the low speed recirculation region. Individual image analysis of the location of the tip of the recirculation zone and tip of the reaction region confirmed previously observed trends, but showed that calculation of the distance between these two points for corresponding image pairs yields results no different than when calculated from random image pairs. This most likely indicates a lag in the anchoring of the flame to changes in the recirculation zone, coupled with significant stochastic variation. An alternate LDI approach, multi-point LDI (MLDI), is also tested experimentally. A single large fuel nozzle is replaced by multiple small fuel nozzles to improve atomization and reduce the total volume of the high-temperature, low velocity recirculation zones, reducing NOx formation. The combustor researched employs a novel staged approach to allow good performance across a wide range of conditions by using a combination of nozzle types optimized to various power settings. The combustor has three independent fuel circuits referenced as pilot, intermediate, and outer. Emissions measurements, OH* chemiluminescence imaging, and thermoacoustic instability studies were run in a pressurized combustion facility at pressures from 2.0 to 5.3 bar.Combustor performance was analyzed for three fuel staging configurations, using local equivalence ratio of the individual circuits as a predictive parameter. Pilot-only mode enabled combustor operation at very low overall equivalence ratios while limiting NOx formation in idle power settings due to its configuration approximating a rich-quench-lean combustor. Pilot and intermediate staging tests demonstrated the range of equivalence ratios that are effective in reducing NOx formation while keeping other pollutants in check; very low equivalence ratio results in high unburned hydrocarbon and carbon monoxide, while very high equivalence ratios result in a detrimental effect as more fuel is routed through the intermediate fuel circuit. Using all three fuel circuits simultaneously in high power operation resulted in very low NOx levels (emissions index at or below 0.5 g/kg), particularly when fuel distribution was such that local equivalence ratio was equal among all circuits. The observed NOx levels compared favorably with other MLDI designs which do not have the operational flexibility of the combustor tested. Thermoacoustic instabilities occurred in the MLDI combustor for some test conditions. The local equivalence ratio of the intermediate fuel circuit was found to be one of the major predictor of the onset of instabilities. Detailed analysis of a two-circuit instability (pilot and intermediate) is presented.

AIAA Aerospace Sciences Meeting and Exhibit, 42nd

AIAA Aerospace Sciences Meeting and Exhibit, 42nd PDF Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 666

Get Book Here

Book Description


Experimental Investigation of a Multiplex Fuel Injector Module with Discrete Jet Swirlers for Low Emission Combustors

Experimental Investigation of a Multiplex Fuel Injector Module with Discrete Jet Swirlers for Low Emission Combustors PDF Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
ISBN: 9781721669417
Category :
Languages : en
Pages : 34

Get Book Here

Book Description
A low-NOx emissions combustor concept has been demonstrated in flame-tube tests. A lean-direct injection (LDI) concept was used where the fuel is injected directly into the flame zone and the overall equivalence ratio of the mixture is lean. The LDI concept described in this report is a multiplex fuel injector module containing multipoint fuel injection tips and multi-burning zones. The injector module comprises 25 equally spaced injection tips within a 76 by 76 mm area that fits into the flame-tube duct. The air swirlers were made from a concave plate on the axis of the fuel injector using drilled holes at an angle to the axis of the fuel injector. The NOx levels were quite low and are greater than 70 percent lower than the 1996 ICAO standard. At an inlet temperature of 810 K, inlet pressure of 2760 kPa, pressure drop of 4 percent and a flame temperature of 1900 K with JP8 fuel, the NOx emission index was 9. The 25-point injector module exhibited the most uniform radial distribution of fuel-air mixture and NOx emissions in the flame tube when compared to other multipoint injection devices. A correlation is developed relating the NOx emissions to inlet temperature, inlet pressure, equivalence ratio and pressure drop. Tacina, Robert and Mao, Chien-Pei and Wey, Changlie Glenn Research Center NASA/TM-2004-212918, AIAA Paper 2004-0185, E-14358

Experimental Investigation of Stability and Low-NOx Potential of a Lean-Direct-Injection Combustor Concept

Experimental Investigation of Stability and Low-NOx Potential of a Lean-Direct-Injection Combustor Concept PDF Author: Jacob Haseman
Publisher:
ISBN:
Category :
Languages : en
Pages : 109

Get Book Here

Book Description
Current trends with swirler/combustor designs tend towards lower emissions in accordance with ICAO standards, with the main problems inherent in common lean-direct-injection (LDI) designs being poor stability and autoignition or flashback issues. The LDI design is meant to combine the good stability and performance of a traditional rich-burn quick-quench lean-burn (RQL) combustor with the ultra-low NOx emissions of a lean-premixed-prevaporized (LPP) combustor. The goal of this research is to investigate the feasibility of using swirlers with varying swirl strengths in an LDI combustor array by performing a series of combustion tests at atmospheric pressure. Three configurations were designed and tested which contained different arrangements of two counter-rotating radial-radial swirler designs with varying swirl strengths in a 3x3 array format. All nine swirlers contained a fuel nozzle with very similar flow numbers and were all set to the same insertion depth with respect to the swirlers' flare exits. Two nozzle insertion depths were investigated to see how the performance changes with changing insertion depth. Three fuel circuits supplied fuel to the nine fuel nozzles to the center, sides, and diagonal swirlers respectively. Testing was conducted by placing the hardware on a horizontally-oriented test rig connected to an air intake manifold, with the inlet air preheated to approximately 400°F and the pressure drop across the swirler set to 4% of atmospheric pressure. These tests investigated fuel staging configurations at various simulated engine throttle settings and flight conditions to gauge the steady-state combustion and LBO characteristics and low- NOx potential of this design. The results of this testing show that all three configurations tested were able to achieve stable-burning with low equivalence ratios for the three simulated flight conditions tested, as well as across a number of other investigated parameters. The two high-strength swirler configurations performed better than the baseline configuration in terms of LBO, stability, and flame uniformity, but all three configurations achieved stable combustion at comparable equivalence ratios to traditional combustor designs currently in use in industry. The low fuel flow rates required for ignition with the larger flow number fuel nozzles also demonstrates the practicality of this design in a real-world scenario. These tests also demonstrate that the deeper nozzle insertion depth performed better than the shallow insertion depth, and that future testing should focus on the high-strength swirler configurations.