Author: Donald M. Kuehn
Publisher:
ISBN:
Category : Carbon dioxide lasers
Languages : en
Pages : 28
Book Description
A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.
A High-pressure Carbon Dioxide Gasdynamic Laser
Author: Donald M. Kuehn
Publisher:
ISBN:
Category : Carbon dioxide lasers
Languages : en
Pages : 28
Book Description
A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.
Publisher:
ISBN:
Category : Carbon dioxide lasers
Languages : en
Pages : 28
Book Description
A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.
NASA Technical Note
Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 480
Book Description
Publisher:
ISBN:
Category :
Languages : en
Pages : 480
Book Description
Nuclear Science Abstracts
Author:
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 680
Book Description
Publisher:
ISBN:
Category : Nuclear energy
Languages : en
Pages : 680
Book Description
Gasdynamic Lasers: An Introduction
Author: John D. Jr. Anderson
Publisher: Elsevier
ISBN: 0323160441
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
Gasdynamic Lasers: An Introduction is a 12-chapter introductory text to major development generations of gasdynamic lasers, focusing on their underlying physical and fundamental aspects. The opening chapters discuss the basic detailed physical phenomena that ultimately are responsible for producing gasdynamic laser action and the methods of calculating the performance of these devices. These topics are followed by a chapter on confirmation of the performance calculations through arc and shock tunnel experiments. The discussion then shifts to vibrational relaxation process behind normal shock waves in CO2-N2-He mixtures and assesses their population inversions occurring in the nonequilibrium flow. Other chapters explore the concepts of downstream mixing and optical cavity in gasdynamic lasers, as well as the laser beam extracted from these devices. A systematic study of aerodynamic windows that use supersonic flow across the aperture is presented in the concluding chapters, along with the phenomena associated with gasdynamic laser diffusers. This introductory text will be of great value to professional scientists and engineers, as well as to students and workers in the field who are interested in interdisciplinary applied science.
Publisher: Elsevier
ISBN: 0323160441
Category : Technology & Engineering
Languages : en
Pages : 193
Book Description
Gasdynamic Lasers: An Introduction is a 12-chapter introductory text to major development generations of gasdynamic lasers, focusing on their underlying physical and fundamental aspects. The opening chapters discuss the basic detailed physical phenomena that ultimately are responsible for producing gasdynamic laser action and the methods of calculating the performance of these devices. These topics are followed by a chapter on confirmation of the performance calculations through arc and shock tunnel experiments. The discussion then shifts to vibrational relaxation process behind normal shock waves in CO2-N2-He mixtures and assesses their population inversions occurring in the nonequilibrium flow. Other chapters explore the concepts of downstream mixing and optical cavity in gasdynamic lasers, as well as the laser beam extracted from these devices. A systematic study of aerodynamic windows that use supersonic flow across the aperture is presented in the concluding chapters, along with the phenomena associated with gasdynamic laser diffusers. This introductory text will be of great value to professional scientists and engineers, as well as to students and workers in the field who are interested in interdisciplinary applied science.
Scientific and Technical Aerospace Reports
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 994
Book Description
STAR
Author:
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 936
Book Description
Publisher:
ISBN:
Category : Aeronautics
Languages : en
Pages : 936
Book Description
Pulsed Gas Lasers
Author: Gennadiĭ Andreevich Mesi︠a︡t︠s︡
Publisher: SPIE Press
ISBN: 9780819417091
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Publisher: SPIE Press
ISBN: 9780819417091
Category : Technology & Engineering
Languages : en
Pages : 392
Book Description
Energy Research Abstracts
Author:
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1740
Book Description
Publisher:
ISBN:
Category : Power resources
Languages : en
Pages : 1740
Book Description
Lasers and Electro-optics
Author: Christopher C. Davis
Publisher: Cambridge University Press
ISBN: 9780521484039
Category : Science
Languages : en
Pages : 742
Book Description
Comprehensive textbook covering the physics and engineering aspects of lasers and electro-optic devices.
Publisher: Cambridge University Press
ISBN: 9780521484039
Category : Science
Languages : en
Pages : 742
Book Description
Comprehensive textbook covering the physics and engineering aspects of lasers and electro-optic devices.
Lasers and Current Optical Techniques in Biology
Author: Giuseppe Palumbo
Publisher: Royal Society of Chemistry
ISBN: 1847551203
Category : Science
Languages : en
Pages : 684
Book Description
The introduction of innovative light sources, fibre laser sources and light emitting diodes, is opening unexpected perspectives into optical techniques and is promising new exciting applications in the field of biomedicine. Lasers and Current Optical Techniques in Biology aims to provide an overview of light sources, together with an extensive and authoritative description of the optical techniques in bio-medicine. This book is designed to give biomedical researchers a strong feel for the capability of physical approaches, promote new interdisciplinary interests and persuade more practitioners to take advantage of optical techniques. Current developments in a variety of optical techniques, including Near-Infra Red Spectroscopy, and traditional and advanced fluorescence techniques are covered, ranging from those that are becoming common practice to those that need much more experimentation before they can be accepted as real breakthroughs. Further topics include optical coherence tomography and its variations, polarised light imaging and, principle laser and lamp sources- a usually fragmentary topic, often dispersed among specialist publications. The wide range of topics covered make Lasers and Current Optical Techniques in Biology of interest to a diverse range of scientific communities.
Publisher: Royal Society of Chemistry
ISBN: 1847551203
Category : Science
Languages : en
Pages : 684
Book Description
The introduction of innovative light sources, fibre laser sources and light emitting diodes, is opening unexpected perspectives into optical techniques and is promising new exciting applications in the field of biomedicine. Lasers and Current Optical Techniques in Biology aims to provide an overview of light sources, together with an extensive and authoritative description of the optical techniques in bio-medicine. This book is designed to give biomedical researchers a strong feel for the capability of physical approaches, promote new interdisciplinary interests and persuade more practitioners to take advantage of optical techniques. Current developments in a variety of optical techniques, including Near-Infra Red Spectroscopy, and traditional and advanced fluorescence techniques are covered, ranging from those that are becoming common practice to those that need much more experimentation before they can be accepted as real breakthroughs. Further topics include optical coherence tomography and its variations, polarised light imaging and, principle laser and lamp sources- a usually fragmentary topic, often dispersed among specialist publications. The wide range of topics covered make Lasers and Current Optical Techniques in Biology of interest to a diverse range of scientific communities.