A First Course in Noncommutative Rings

A First Course in Noncommutative Rings PDF Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.

A First Course in Noncommutative Rings

A First Course in Noncommutative Rings PDF Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 1468404067
Category : Mathematics
Languages : en
Pages : 410

Get Book Here

Book Description
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.

A First Course in Noncommutative Rings

A First Course in Noncommutative Rings PDF Author: Tsit-Yuen Lam
Publisher: Springer Science & Business Media
ISBN: 9780387953250
Category : Mathematics
Languages : en
Pages : 412

Get Book Here

Book Description
Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.

A First Course in Noncommutative Rings

A First Course in Noncommutative Rings PDF Author: Tsit-Yuen Lam
Publisher: Springer Science & Business Media
ISBN: 9780387951836
Category : Mathematics
Languages : en
Pages : 416

Get Book Here

Book Description
Aimed at the novice rather than the connoisseur and stressing the role of examples and motivation, this text is suitable not only for use in a graduate course, but also for self-study in the subject by interested graduate students. More than 400 exercises testing the understanding of the general theory in the text are included in this new edition.

Exercises in Modules and Rings

Exercises in Modules and Rings PDF Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 0387488995
Category : Mathematics
Languages : en
Pages : 427

Get Book Here

Book Description
This volume offers a compendium of exercises of varying degree of difficulty in the theory of modules and rings. It is the companion volume to GTM 189. All exercises are solved in full detail. Each section begins with an introduction giving the general background and the theoretical basis for the problems that follow.

Introduction to Noncommutative Algebra

Introduction to Noncommutative Algebra PDF Author: Matej Brešar
Publisher: Springer
ISBN: 3319086936
Category : Mathematics
Languages : en
Pages : 227

Get Book Here

Book Description
Providing an elementary introduction to noncommutative rings and algebras, this textbook begins with the classical theory of finite dimensional algebras. Only after this, modules, vector spaces over division rings, and tensor products are introduced and studied. This is followed by Jacobson's structure theory of rings. The final chapters treat free algebras, polynomial identities, and rings of quotients. Many of the results are not presented in their full generality. Rather, the emphasis is on clarity of exposition and simplicity of the proofs, with several being different from those in other texts on the subject. Prerequisites are kept to a minimum, and new concepts are introduced gradually and are carefully motivated. Introduction to Noncommutative Algebra is therefore accessible to a wide mathematical audience. It is, however, primarily intended for beginning graduate and advanced undergraduate students encountering noncommutative algebra for the first time.

Lectures on Modules and Rings

Lectures on Modules and Rings PDF Author: Tsit-Yuen Lam
Publisher: Springer Science & Business Media
ISBN: 1461205255
Category : Mathematics
Languages : en
Pages : 577

Get Book Here

Book Description
This new book can be read independently from the first volume and may be used for lecturing, seminar- and self-study, or for general reference. It focuses more on specific topics in order to introduce readers to a wealth of basic and useful ideas without the hindrance of heavy machinery or undue abstractions. User-friendly with its abundance of examples illustrating the theory at virtually every step, the volume contains a large number of carefully chosen exercises to provide newcomers with practice, while offering a rich additional source of information to experts. A direct approach is used in order to present the material in an efficient and economic way, thereby introducing readers to a considerable amount of interesting ring theory without being dragged through endless preparatory material.

A Course in Ring Theory

A Course in Ring Theory PDF Author: Donald S. Passman
Publisher: American Mathematical Soc.
ISBN: 9780821869383
Category : Mathematics
Languages : en
Pages : 324

Get Book Here

Book Description
Projective modules: Modules and homomorphisms Projective modules Completely reducible modules Wedderburn rings Artinian rings Hereditary rings Dedekind domains Projective dimension Tensor products Local rings Polynomial rings: Skew polynomial rings Grothendieck groups Graded rings and modules Induced modules Syzygy theorem Patching theorem Serre conjecture Big projectives Generic flatness Nullstellensatz Injective modules: Injective modules Injective dimension Essential extensions Maximal ring of quotients Classical ring of quotients Goldie rings Uniform dimension Uniform injective modules Reduced rank Index

An Introduction to Noncommutative Noetherian Rings

An Introduction to Noncommutative Noetherian Rings PDF Author: K. R. Goodearl
Publisher: Cambridge University Press
ISBN: 9780521545372
Category : Mathematics
Languages : en
Pages : 372

Get Book Here

Book Description
This introduction to noncommutative noetherian rings is intended to be accessible to anyone with a basic background in abstract algebra. It can be used as a second-year graduate text, or as a self-contained reference. Extensive explanatory discussion is given, and exercises are integrated throughout. This edition incorporates substantial revisions, particularly in the first third of the book, where the presentation has been changed to increase accessibility and topicality. New material includes the basic types of quantum groups, which then serve as test cases for the theory developed.

Noncommutative Rings

Noncommutative Rings PDF Author: I. N. Herstein
Publisher: American Mathematical Society
ISBN: 1470456052
Category : Mathematics
Languages : en
Pages : 202

Get Book Here

Book Description
Noncommutative Rings provides a cross-section of ideas, techniques, and results that give the reader an idea of that part of algebra which concerns itself with noncommutative rings. In the space of 200 pages, Herstein covers the Jacobson radical, semisimple rings, commutativity theorems, simple algebras, representations of finite groups, polynomial identities, Goldie's theorem, and the Golod–Shafarevitch theorem. Almost every practicing ring theorist has studied portions of this classic monograph.

Ring and Module Theory

Ring and Module Theory PDF Author: Toma Albu
Publisher: Springer Science & Business Media
ISBN: 3034600070
Category : Mathematics
Languages : en
Pages : 204

Get Book Here

Book Description
This book is a collection of invited papers and articles, many presented at the 2008 International Conference on Ring and Module Theory. The papers explore the latest in various areas of algebra, including ring theory, module theory and commutative algebra.