Author: Bijan Davvaz
Publisher: Springer Nature
ISBN: 9811663653
Category : Mathematics
Languages : en
Pages : 300
Book Description
This textbook provides a readable account of the examples and fundamental results of groups from a theoretical and geometrical point of view. Topics on important examples of groups (like cyclic groups, permutation groups, group of arithmetical functions, matrix groups and linear groups), Lagrange’s theorem, normal subgroups, factor groups, derived subgroup, homomorphism, isomorphism and automorphism of groups have been discussed in depth. Covering all major topics, this book is targeted to undergraduate students of mathematics with no prerequisite knowledge of the discussed topics. Each section ends with a set of worked-out problems and supplementary exercises to challenge the knowledge and ability of the reader.
A First Course in Group Theory
A Course on Group Theory
Author: John S. Rose
Publisher: Courier Corporation
ISBN: 0486170667
Category : Mathematics
Languages : en
Pages : 322
Book Description
Text for advanced courses in group theory focuses on finite groups, with emphasis on group actions. Explores normal and arithmetical structures of groups as well as applications. 679 exercises. 1978 edition.
Publisher: Courier Corporation
ISBN: 0486170667
Category : Mathematics
Languages : en
Pages : 322
Book Description
Text for advanced courses in group theory focuses on finite groups, with emphasis on group actions. Explores normal and arithmetical structures of groups as well as applications. 679 exercises. 1978 edition.
A First Course in Group Theory
Author: Cyril F. Gardiner
Publisher: Springer Science & Business Media
ISBN: 1461381177
Category : Mathematics
Languages : en
Pages : 236
Book Description
One of the difficulties in an introductory book is to communicate a sense of purpose. Only too easily to the beginner does the book become a sequence of definitions, concepts, and results which seem little more than curiousities leading nowhere in particular. In this book I have tried to overcome this problem by making my central aim the determination of all possible groups of orders 1 to 15, together with some study of their structure. By the time this aim is realised towards the end of the book, the reader should have acquired the basic ideas and methods of group theory. To make the book more useful to users of mathematics, in particular students of physics and chemistry, I have included some applications of permutation groups and a discussion of finite point groups. The latter are the simplest examples of groups of partic ular interest to scientists. They occur as symmetry groups of physical configurations such as molecules. Many ideas are discussed mainly in the exercises and the solutions at the end of the book. However, such ideas are used rarely in the body of the book. When they are, suitable references are given. Other exercises test and reinfol:'ce the text in the usual way. A final chapter gives some idea of the directions in which the interested reader may go after working through this book. References to help in this are listed after the outline solutions.
Publisher: Springer Science & Business Media
ISBN: 1461381177
Category : Mathematics
Languages : en
Pages : 236
Book Description
One of the difficulties in an introductory book is to communicate a sense of purpose. Only too easily to the beginner does the book become a sequence of definitions, concepts, and results which seem little more than curiousities leading nowhere in particular. In this book I have tried to overcome this problem by making my central aim the determination of all possible groups of orders 1 to 15, together with some study of their structure. By the time this aim is realised towards the end of the book, the reader should have acquired the basic ideas and methods of group theory. To make the book more useful to users of mathematics, in particular students of physics and chemistry, I have included some applications of permutation groups and a discussion of finite point groups. The latter are the simplest examples of groups of partic ular interest to scientists. They occur as symmetry groups of physical configurations such as molecules. Many ideas are discussed mainly in the exercises and the solutions at the end of the book. However, such ideas are used rarely in the body of the book. When they are, suitable references are given. Other exercises test and reinfol:'ce the text in the usual way. A final chapter gives some idea of the directions in which the interested reader may go after working through this book. References to help in this are listed after the outline solutions.
Visual Group Theory
Author: Nathan Carter
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 313
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
Publisher: American Mathematical Soc.
ISBN: 1470464330
Category : Education
Languages : en
Pages : 313
Book Description
Recipient of the Mathematical Association of America's Beckenbach Book Prize in 2012! Group theory is the branch of mathematics that studies symmetry, found in crystals, art, architecture, music and many other contexts, but its beauty is lost on students when it is taught in a technical style that is difficult to understand. Visual Group Theory assumes only a high school mathematics background and covers a typical undergraduate course in group theory from a thoroughly visual perspective. The more than 300 illustrations in Visual Group Theory bring groups, subgroups, homomorphisms, products, and quotients into clear view. Every topic and theorem is accompanied with a visual demonstration of its meaning and import, from the basics of groups and subgroups through advanced structural concepts such as semidirect products and Sylow theory.
A Course in the Theory of Groups
Author: Derek J.S. Robinson
Publisher: Springer Science & Business Media
ISBN: 1468401289
Category : Mathematics
Languages : en
Pages : 498
Book Description
" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups.
Publisher: Springer Science & Business Media
ISBN: 1468401289
Category : Mathematics
Languages : en
Pages : 498
Book Description
" A group is defined by means of the laws of combinations of its symbols," according to a celebrated dictum of Cayley. And this is probably still as good a one-line explanation as any. The concept of a group is surely one of the central ideas of mathematics. Certainly there are a few branches of that science in which groups are not employed implicitly or explicitly. Nor is the use of groups confined to pure mathematics. Quantum theory, molecular and atomic structure, and crystallography are just a few of the areas of science in which the idea of a group as a measure of symmetry has played an important part. The theory of groups is the oldest branch of modern algebra. Its origins are to be found in the work of Joseph Louis Lagrange (1736-1813), Paulo Ruffini (1765-1822), and Evariste Galois (1811-1832) on the theory of algebraic equations. Their groups consisted of permutations of the variables or of the roots of polynomials, and indeed for much of the nineteenth century all groups were finite permutation groups. Nevertheless many of the fundamental ideas of group theory were introduced by these early workers and their successors, Augustin Louis Cauchy (1789-1857), Ludwig Sylow (1832-1918), Camille Jordan (1838-1922) among others. The concept of an abstract group is clearly recognizable in the work of Arthur Cayley (1821-1895) but it did not really win widespread acceptance until Walther von Dyck (1856-1934) introduced presentations of groups.
Group Theory
Author: W. R. Scott
Publisher: Courier Corporation
ISBN: 0486140164
Category : Mathematics
Languages : en
Pages : 516
Book Description
Here is clear, well-organized coverage of the most standard theorems, including isomorphism theorems, transformations and subgroups, direct sums, abelian groups, and more. This undergraduate-level text features more than 500 exercises.
Publisher: Courier Corporation
ISBN: 0486140164
Category : Mathematics
Languages : en
Pages : 516
Book Description
Here is clear, well-organized coverage of the most standard theorems, including isomorphism theorems, transformations and subgroups, direct sums, abelian groups, and more. This undergraduate-level text features more than 500 exercises.
Abstract Algebra
Author: Dan Saracino
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320
Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Publisher: Waveland Press
ISBN: 1478610131
Category : Mathematics
Languages : en
Pages : 320
Book Description
The Second Edition of this classic text maintains the clear exposition, logical organization, and accessible breadth of coverage that have been its hallmarks. It plunges directly into algebraic structures and incorporates an unusually large number of examples to clarify abstract concepts as they arise. Proofs of theorems do more than just prove the stated results; Saracino examines them so readers gain a better impression of where the proofs come from and why they proceed as they do. Most of the exercises range from easy to moderately difficult and ask for understanding of ideas rather than flashes of insight. The new edition introduces five new sections on field extensions and Galois theory, increasing its versatility by making it appropriate for a two-semester as well as a one-semester course.
Representation Theory
Author: William Fulton
Publisher: Springer Science & Business Media
ISBN: 9780387974958
Category : Mathematics
Languages : en
Pages : 616
Book Description
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Publisher: Springer Science & Business Media
ISBN: 9780387974958
Category : Mathematics
Languages : en
Pages : 616
Book Description
Introducing finite-dimensional representations of Lie groups and Lie algebras, this example-oriented book works from representation theory of finite groups, through Lie groups and Lie algrbras to the finite dimensional representations of the classical groups.
Finite Group Theory
Author: I. Martin Isaacs
Publisher: American Mathematical Society
ISBN: 1470471604
Category : Mathematics
Languages : en
Pages : 368
Book Description
The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur–Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem. Topics that seldom (or never) appear in books are also covered. These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the “principal ideal theorem” of transfer theory and many smaller results that are not very well known. Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it. Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Pólya Lecturer in 2003–2005.
Publisher: American Mathematical Society
ISBN: 1470471604
Category : Mathematics
Languages : en
Pages : 368
Book Description
The text begins with a review of group actions and Sylow theory. It includes semidirect products, the Schur–Zassenhaus theorem, the theory of commutators, coprime actions on groups, transfer theory, Frobenius groups, primitive and multiply transitive permutation groups, the simplicity of the PSL groups, the generalized Fitting subgroup and also Thompson's J-subgroup and his normal $p$-complement theorem. Topics that seldom (or never) appear in books are also covered. These include subnormality theory, a group-theoretic proof of Burnside's theorem about groups with order divisible by just two primes, the Wielandt automorphism tower theorem, Yoshida's transfer theorem, the “principal ideal theorem” of transfer theory and many smaller results that are not very well known. Proofs often contain original ideas, and they are given in complete detail. In many cases they are simpler than can be found elsewhere. The book is largely based on the author's lectures, and consequently, the style is friendly and somewhat informal. Finally, the book includes a large collection of problems at disparate levels of difficulty. These should enable students to practice group theory and not just read about it. Martin Isaacs is professor of mathematics at the University of Wisconsin, Madison. Over the years, he has received many teaching awards and is well known for his inspiring teaching and lecturing. He received the University of Wisconsin Distinguished Teaching Award in 1985, the Benjamin Smith Reynolds Teaching Award in 1989, and the Wisconsin Section MAA Teaching Award in 1993, to name only a few. He was also honored by being the selected MAA Pólya Lecturer in 2003–2005.
Finite Group Theory
Author: M. Aschbacher
Publisher: Cambridge University Press
ISBN: 9780521786751
Category : Mathematics
Languages : en
Pages : 320
Book Description
During the last 40 years the theory of finite groups has developed dramatically. The finite simple groups have been classified and are becoming better understood. Tools exist to reduce many questions about arbitrary finite groups to similar questions about simple groups. Since the classification there have been numerous applications of this theory in other branches of mathematics. Finite Group Theory develops the foundations of the theory of finite groups. It can serve as a text for a course on finite groups for students already exposed to a first course in algebra. It could supply the background necessary to begin reading journal articles in the field. For specialists it also provides a reference on the foundations of the subject. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises.
Publisher: Cambridge University Press
ISBN: 9780521786751
Category : Mathematics
Languages : en
Pages : 320
Book Description
During the last 40 years the theory of finite groups has developed dramatically. The finite simple groups have been classified and are becoming better understood. Tools exist to reduce many questions about arbitrary finite groups to similar questions about simple groups. Since the classification there have been numerous applications of this theory in other branches of mathematics. Finite Group Theory develops the foundations of the theory of finite groups. It can serve as a text for a course on finite groups for students already exposed to a first course in algebra. It could supply the background necessary to begin reading journal articles in the field. For specialists it also provides a reference on the foundations of the subject. This second edition has been considerably improved with a completely rewritten Chapter 15 considering the 2-Signalizer Functor Theorem, and the addition of an appendix containing solutions to exercises.