Author: Vladimir V. Tkachuk
Publisher: Springer Science & Business Media
ISBN: 1441974423
Category : Mathematics
Languages : en
Pages : 497
Book Description
The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.
A Cp-Theory Problem Book
Author: Vladimir V. Tkachuk
Publisher: Springer Science & Business Media
ISBN: 1441974423
Category : Mathematics
Languages : en
Pages : 497
Book Description
The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.
Publisher: Springer Science & Business Media
ISBN: 1441974423
Category : Mathematics
Languages : en
Pages : 497
Book Description
The theory of function spaces endowed with the topology of point wise convergence, or Cp-theory, exists at the intersection of three important areas of mathematics: topological algebra, functional analysis, and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from each of these areas of research. Through over 500 carefully selected problems and exercises, this volume provides a self-contained introduction to Cp-theory and general topology. By systematically introducing each of the major topics in Cp-theory, this volume is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research. Key features include: - A unique problem-based introduction to the theory of function spaces. - Detailed solutions to each of the presented problems and exercises. - A comprehensive bibliography reflecting the state-of-the-art in modern Cp-theory. - Numerous open problems and directions for further research. This volume can be used as a textbook for courses in both Cp-theory and general topology as well as a reference guide for specialists studying Cp-theory and related topics. This book also provides numerous topics for PhD specialization as well as a large variety of material suitable for graduate research.
A Cp-Theory Problem Book
Author: Vladimir V. Tkachuk
Publisher: Springer
ISBN: 3319047477
Category : Mathematics
Languages : en
Pages : 595
Book Description
This work is a continuation of the first volume published by Springer in 2011, entitled "A Cp-Theory Problem Book: Topological and Function Spaces." The first volume provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. This present volume covers a wide variety of topics in Cp-theory and general topology at the professional level bringing the reader to the frontiers of modern research. The volume contains 500 problems and exercises with complete solutions. It can also be used as an introduction to advanced set theory and descriptive set theory. The book presents diverse topics of the theory of function spaces with the topology of pointwise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from these areas of research. Moreover, this book gives a reasonably complete coverage of Cp-theory through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research.
Publisher: Springer
ISBN: 3319047477
Category : Mathematics
Languages : en
Pages : 595
Book Description
This work is a continuation of the first volume published by Springer in 2011, entitled "A Cp-Theory Problem Book: Topological and Function Spaces." The first volume provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. This present volume covers a wide variety of topics in Cp-theory and general topology at the professional level bringing the reader to the frontiers of modern research. The volume contains 500 problems and exercises with complete solutions. It can also be used as an introduction to advanced set theory and descriptive set theory. The book presents diverse topics of the theory of function spaces with the topology of pointwise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology. Cp-theory has an important role in the classification and unification of heterogeneous results from these areas of research. Moreover, this book gives a reasonably complete coverage of Cp-theory through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research.
A Cp-Theory Problem Book
Author: Vladimir V. Tkachuk
Publisher: Springer
ISBN: 3319243853
Category : Mathematics
Languages : en
Pages : 740
Book Description
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.
Publisher: Springer
ISBN: 3319243853
Category : Mathematics
Languages : en
Pages : 740
Book Description
This fourth volume in Vladimir Tkachuk's series on Cp-theory gives reasonably complete coverage of the theory of functional equivalencies through 500 carefully selected problems and exercises. By systematically introducing each of the major topics of Cp-theory, the book is intended to bring a dedicated reader from basic topological principles to the frontiers of modern research. The book presents complete and up-to-date information on the preservation of topological properties by homeomorphisms of function spaces. An exhaustive theory of t-equivalent, u-equivalent and l-equivalent spaces is developed from scratch. The reader will also find introductions to the theory of uniform spaces, the theory of locally convex spaces, as well as the theory of inverse systems and dimension theory. Moreover, the inclusion of Kolmogorov's solution of Hilbert's Problem 13 is included as it is needed for the presentation of the theory of l-equivalent spaces. This volume contains the most important classical results on functional equivalencies, in particular, Gul'ko and Khmyleva's example of non-preservation of compactness by t-equivalence, Okunev's method of constructing l-equivalent spaces and the theorem of Marciszewski and Pelant on u-invariance of absolute Borel sets.
Function Spaces with Uniform, Fine and Graph Topologies
Author: Robert A. McCoy
Publisher: Springer
ISBN: 3319770543
Category : Mathematics
Languages : en
Pages : 121
Book Description
This book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fine topologies on the space H(X) of all self-homeomorphisms on a metric space (X,d). The subject matter of this monograph is significant from the theoretical viewpoint, but also has applications in areas such as analysis, approximation theory and differential topology. Written in an accessible style, this book will be of interest to researchers as well as graduate students in this vibrant research area.
Publisher: Springer
ISBN: 3319770543
Category : Mathematics
Languages : en
Pages : 121
Book Description
This book presents a comprehensive account of the theory of spaces of continuous functions under uniform, fine and graph topologies. Besides giving full details of known results, an attempt is made to give generalizations wherever possible, enriching the existing literature. The goal of this monograph is to provide an extensive study of the uniform, fine and graph topologies on the space C(X,Y) of all continuous functions from a Tychonoff space X to a metric space (Y,d); and the uniform and fine topologies on the space H(X) of all self-homeomorphisms on a metric space (X,d). The subject matter of this monograph is significant from the theoretical viewpoint, but also has applications in areas such as analysis, approximation theory and differential topology. Written in an accessible style, this book will be of interest to researchers as well as graduate students in this vibrant research area.
A Cp-Theory Problem Book
Author: Vladimir V. Tkachuk
Publisher: Springer
ISBN: 3319160923
Category : Mathematics
Languages : en
Pages : 538
Book Description
This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level. The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained and works in tandem with the other two, containing five hundred carefully selected problems and solutions. It can also be considered as an introduction to advanced set theory and descriptive set theory, presenting diverse topics of the theory of function spaces with the topology of point wise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology.
Publisher: Springer
ISBN: 3319160923
Category : Mathematics
Languages : en
Pages : 538
Book Description
This third volume in Vladimir Tkachuk's series on Cp-theory problems applies all modern methods of Cp-theory to study compactness-like properties in function spaces and introduces the reader to the theory of compact spaces widely used in Functional Analysis. The text is designed to bring a dedicated reader from basic topological principles to the frontiers of modern research covering a wide variety of topics in Cp-theory and general topology at the professional level. The first volume, Topological and Function Spaces © 2011, provided an introduction from scratch to Cp-theory and general topology, preparing the reader for a professional understanding of Cp-theory in the last section of its main text. The second volume, Special Features of Function Spaces © 2014, continued from the first, giving reasonably complete coverage of Cp-theory, systematically introducing each of the major topics and providing 500 carefully selected problems and exercises with complete solutions. This third volume is self-contained and works in tandem with the other two, containing five hundred carefully selected problems and solutions. It can also be considered as an introduction to advanced set theory and descriptive set theory, presenting diverse topics of the theory of function spaces with the topology of point wise convergence, or Cp-theory which exists at the intersection of topological algebra, functional analysis and general topology.
Functional Analysis and Continuous Optimization
Author: José M. Amigó
Publisher: Springer Nature
ISBN: 3031300149
Category : Mathematics
Languages : en
Pages : 273
Book Description
The book includes selected contributions presented at the "International Meeting on Functional Analysis and Continuous Optimization" held in Elche (Spain) on June 16–17, 2022. Its contents cover very recent results in functional analysis, continuous optimization and the interplay between these disciplines. Therefore, this book showcases current research on functional analysis and optimization with individual contributions, as well as new developments in both areas. As a result, the reader will find useful information and stimulating ideas.
Publisher: Springer Nature
ISBN: 3031300149
Category : Mathematics
Languages : en
Pages : 273
Book Description
The book includes selected contributions presented at the "International Meeting on Functional Analysis and Continuous Optimization" held in Elche (Spain) on June 16–17, 2022. Its contents cover very recent results in functional analysis, continuous optimization and the interplay between these disciplines. Therefore, this book showcases current research on functional analysis and optimization with individual contributions, as well as new developments in both areas. As a result, the reader will find useful information and stimulating ideas.
Pseudocompact Topological Spaces
Author: Michael Hrušák
Publisher: Springer
ISBN: 3319916807
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures. The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.
Publisher: Springer
ISBN: 3319916807
Category : Mathematics
Languages : en
Pages : 309
Book Description
This book, intended for postgraduate students and researchers, presents many results of historical importance on pseudocompact spaces. In 1948, E. Hewitt introduced the concept of pseudocompactness which generalizes a property of compact subsets of the real line. A topological space is pseudocompact if the range of any real-valued, continuous function defined on the space is a bounded subset of the real line. Pseudocompact spaces constitute a natural and fundamental class of objects in General Topology and research into their properties has important repercussions in diverse branches of Mathematics, such as Functional Analysis, Dynamical Systems, Set Theory and Topological-Algebraic structures. The collection of authors of this volume include pioneers in their fields who have written a comprehensive explanation on this subject. In addition, the text examines new lines of research that have been at the forefront of mathematics. There is, as yet, no text that systematically compiles and develops the extensive theory of pseudocompact spaces, making this book an essential asset for anyone in the field of topology.
Topological Vector Spaces and Their Applications
Author: V.I. Bogachev
Publisher: Springer
ISBN: 3319571176
Category : Mathematics
Languages : en
Pages : 466
Book Description
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.
Publisher: Springer
ISBN: 3319571176
Category : Mathematics
Languages : en
Pages : 466
Book Description
This book gives a compact exposition of the fundamentals of the theory of locally convex topological vector spaces. Furthermore it contains a survey of the most important results of a more subtle nature, which cannot be regarded as basic, but knowledge which is useful for understanding applications. Finally, the book explores some of such applications connected with differential calculus and measure theory in infinite-dimensional spaces. These applications are a central aspect of the book, which is why it is different from the wide range of existing texts on topological vector spaces. Overall, this book develops differential and integral calculus on infinite-dimensional locally convex spaces by using methods and techniques of the theory of locally convex spaces. The target readership includes mathematicians and physicists whose research is related to infinite-dimensional analysis.
CP Violation
Author: I. I. Bigi
Publisher: Cambridge University Press
ISBN: 1139478249
Category : Science
Languages : en
Pages : 1
Book Description
Why didn't the matter in our Universe annihilate with antimatter immediately after its creation? The study of CP violation may help to answer this fundamental question. This book presents theoretical tools necessary to understand this phenomenon. Reflecting the explosion of new results over the last decade, this second edition has been substantially expanded. It introduces charge conjugation, parity and time reversal, before describing the Kobayashi-Maskawa (KM) theory for CP violation and our understanding of CP violation in kaon decays. It reveals how the discovery of B mesons has provided a new laboratory to study CP violation with KM theory predicting large asymmetries, and discusses how these predictions have been confirmed since the first edition of this book. Later chapters describe the search for a new theory of nature's fundamental dynamics. This book is suitable for researchers in high energy, atomic and nuclear physics, and the history and philosophy of science.
Publisher: Cambridge University Press
ISBN: 1139478249
Category : Science
Languages : en
Pages : 1
Book Description
Why didn't the matter in our Universe annihilate with antimatter immediately after its creation? The study of CP violation may help to answer this fundamental question. This book presents theoretical tools necessary to understand this phenomenon. Reflecting the explosion of new results over the last decade, this second edition has been substantially expanded. It introduces charge conjugation, parity and time reversal, before describing the Kobayashi-Maskawa (KM) theory for CP violation and our understanding of CP violation in kaon decays. It reveals how the discovery of B mesons has provided a new laboratory to study CP violation with KM theory predicting large asymmetries, and discusses how these predictions have been confirmed since the first edition of this book. Later chapters describe the search for a new theory of nature's fundamental dynamics. This book is suitable for researchers in high energy, atomic and nuclear physics, and the history and philosophy of science.
Mathematics and Computation
Author: Avi Wigderson
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography
Publisher: Princeton University Press
ISBN: 0691189137
Category : Computers
Languages : en
Pages : 434
Book Description
From the winner of the Turing Award and the Abel Prize, an introduction to computational complexity theory, its connections and interactions with mathematics, and its central role in the natural and social sciences, technology, and philosophy Mathematics and Computation provides a broad, conceptual overview of computational complexity theory—the mathematical study of efficient computation. With important practical applications to computer science and industry, computational complexity theory has evolved into a highly interdisciplinary field, with strong links to most mathematical areas and to a growing number of scientific endeavors. Avi Wigderson takes a sweeping survey of complexity theory, emphasizing the field’s insights and challenges. He explains the ideas and motivations leading to key models, notions, and results. In particular, he looks at algorithms and complexity, computations and proofs, randomness and interaction, quantum and arithmetic computation, and cryptography and learning, all as parts of a cohesive whole with numerous cross-influences. Wigderson illustrates the immense breadth of the field, its beauty and richness, and its diverse and growing interactions with other areas of mathematics. He ends with a comprehensive look at the theory of computation, its methodology and aspirations, and the unique and fundamental ways in which it has shaped and will further shape science, technology, and society. For further reading, an extensive bibliography is provided for all topics covered. Mathematics and Computation is useful for undergraduate and graduate students in mathematics, computer science, and related fields, as well as researchers and teachers in these fields. Many parts require little background, and serve as an invitation to newcomers seeking an introduction to the theory of computation. Comprehensive coverage of computational complexity theory, and beyond High-level, intuitive exposition, which brings conceptual clarity to this central and dynamic scientific discipline Historical accounts of the evolution and motivations of central concepts and models A broad view of the theory of computation's influence on science, technology, and society Extensive bibliography