Author: Brian Osserman
Publisher: American Mathematical Society
ISBN: 1470466651
Category : Mathematics
Languages : en
Pages : 279
Book Description
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
A Concise Introduction to Algebraic Varieties
Author: Brian Osserman
Publisher: American Mathematical Society
ISBN: 1470466651
Category : Mathematics
Languages : en
Pages : 279
Book Description
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
Publisher: American Mathematical Society
ISBN: 1470466651
Category : Mathematics
Languages : en
Pages : 279
Book Description
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
A Concise Introduction to Algebraic Varieties
Author: Brian Osserman
Publisher: American Mathematical Society
ISBN: 1470460130
Category : Mathematics
Languages : en
Pages : 279
Book Description
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
Publisher: American Mathematical Society
ISBN: 1470460130
Category : Mathematics
Languages : en
Pages : 279
Book Description
A Concise Introduction to Algebraic Varieties is designed for a one-term introductory course on algebraic varieties over an algebraically closed field, and it provides a solid basis for a course on schemes and cohomology or on specialized topics, such as toric varieties and moduli spaces of curves. The book balances generality and accessibility by presenting local and global concepts, such as nonsingularity, normality, and completeness using the language of atlases, an approach that is most commonly associated with differential topology. The book concludes with a discussion of the Riemann-Roch theorem, the Brill-Noether theorem, and applications. The prerequisites for the book are a strong undergraduate algebra course and a working familiarity with basic point-set topology. A course in graduate algebra is helpful but not required. The book includes appendices presenting useful background in complex analytic topology and commutative algebra and provides plentiful examples and exercises that help build intuition and familiarity with algebraic varieties.
A Concise Course in Algebraic Topology
Author: J. P. May
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Publisher: University of Chicago Press
ISBN: 9780226511832
Category : Mathematics
Languages : en
Pages : 262
Book Description
Algebraic topology is a basic part of modern mathematics, and some knowledge of this area is indispensable for any advanced work relating to geometry, including topology itself, differential geometry, algebraic geometry, and Lie groups. This book provides a detailed treatment of algebraic topology both for teachers of the subject and for advanced graduate students in mathematics either specializing in this area or continuing on to other fields. J. Peter May's approach reflects the enormous internal developments within algebraic topology over the past several decades, most of which are largely unknown to mathematicians in other fields. But he also retains the classical presentations of various topics where appropriate. Most chapters end with problems that further explore and refine the concepts presented. The final four chapters provide sketches of substantial areas of algebraic topology that are normally omitted from introductory texts, and the book concludes with a list of suggested readings for those interested in delving further into the field.
Introduction to Algebraic Geometry
Author: Serge Lang
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273
Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
Publisher: Courier Dover Publications
ISBN: 048683980X
Category : Mathematics
Languages : en
Pages : 273
Book Description
Author Serge Lang defines algebraic geometry as the study of systems of algebraic equations in several variables and of the structure that one can give to the solutions of such equations. The study can be carried out in four ways: analytical, topological, algebraico-geometric, and arithmetic. This volume offers a rapid, concise, and self-contained introductory approach to the algebraic aspects of the third method, the algebraico-geometric. The treatment assumes only familiarity with elementary algebra up to the level of Galois theory. Starting with an opening chapter on the general theory of places, the author advances to examinations of algebraic varieties, the absolute theory of varieties, and products, projections, and correspondences. Subsequent chapters explore normal varieties, divisors and linear systems, differential forms, the theory of simple points, and algebraic groups, concluding with a focus on the Riemann-Roch theorem. All the theorems of a general nature related to the foundations of the theory of algebraic groups are featured.
Homology Theory on Algebraic Varieties
Author: Andrew H. Wallace
Publisher: Courier Corporation
ISBN: 0486799905
Category : Mathematics
Languages : en
Pages : 129
Book Description
Concise and authoritative monograph, geared toward advanced undergraduate and graduate students, covers linear sections, singular and hyperplane sections, Lefschetz's first and second theorems, the Poincaré formula, and invariant and relative cycles. 1958 edition.
Publisher: Courier Corporation
ISBN: 0486799905
Category : Mathematics
Languages : en
Pages : 129
Book Description
Concise and authoritative monograph, geared toward advanced undergraduate and graduate students, covers linear sections, singular and hyperplane sections, Lefschetz's first and second theorems, the Poincaré formula, and invariant and relative cycles. 1958 edition.
A Concise Introduction to Linear Algebra
Author: Géza Schay
Publisher: Springer Science & Business Media
ISBN: 0817683259
Category : Mathematics
Languages : en
Pages : 338
Book Description
Building on the author's previous edition on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996), this book offers a refreshingly concise text suitable for a standard course in linear algebra, presenting a carefully selected array of essential topics that can be thoroughly covered in a single semester. Although the exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, it notably deviates in providing an early emphasis on the geometric foundations of linear algebra. This gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts covered later in the course. The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book. Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.
Publisher: Springer Science & Business Media
ISBN: 0817683259
Category : Mathematics
Languages : en
Pages : 338
Book Description
Building on the author's previous edition on the subject (Introduction to Linear Algebra, Jones & Bartlett, 1996), this book offers a refreshingly concise text suitable for a standard course in linear algebra, presenting a carefully selected array of essential topics that can be thoroughly covered in a single semester. Although the exposition generally falls in line with the material recommended by the Linear Algebra Curriculum Study Group, it notably deviates in providing an early emphasis on the geometric foundations of linear algebra. This gives students a more intuitive understanding of the subject and enables an easier grasp of more abstract concepts covered later in the course. The focus throughout is rooted in the mathematical fundamentals, but the text also investigates a number of interesting applications, including a section on computer graphics, a chapter on numerical methods, and many exercises and examples using MATLAB. Meanwhile, many visuals and problems (a complete solutions manual is available to instructors) are included to enhance and reinforce understanding throughout the book. Brief yet precise and rigorous, this work is an ideal choice for a one-semester course in linear algebra targeted primarily at math or physics majors. It is a valuable tool for any professor who teaches the subject.
Birational Geometry of Algebraic Varieties
Author: Janos Kollár
Publisher: Cambridge University Press
ISBN: 9780521060226
Category : Mathematics
Languages : en
Pages : 264
Book Description
One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.
Publisher: Cambridge University Press
ISBN: 9780521060226
Category : Mathematics
Languages : en
Pages : 264
Book Description
One of the major discoveries of the past two decades in algebraic geometry is the realization that the theory of minimal models of surfaces can be generalized to higher dimensional varieties. This generalization, called the minimal model program, or Mori's program, has developed into a powerful tool with applications to diverse questions in algebraic geometry and beyond. This book provides the first comprehensive introduction to the circle of ideas developed around the program, the prerequisites being only a basic knowledge of algebraic geometry. It will be of great interest to graduate students and researchers working in algebraic geometry and related fields.
Introduction to Singularities
Author: Shihoko Ishii
Publisher: Springer
ISBN: 443155081X
Category : Mathematics
Languages : en
Pages : 227
Book Description
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.
Publisher: Springer
ISBN: 443155081X
Category : Mathematics
Languages : en
Pages : 227
Book Description
This book is an introduction to singularities for graduate students and researchers. It is said that algebraic geometry originated in the seventeenth century with the famous work Discours de la méthode pour bien conduire sa raison, et chercher la vérité dans les sciences by Descartes. In that book he introduced coordinates to the study of geometry. After its publication, research on algebraic varieties developed steadily. Many beautiful results emerged in mathematicians’ works. Most of them were about non-singular varieties. Singularities were considered “bad” objects that interfered with knowledge of the structure of an algebraic variety. In the past three decades, however, it has become clear that singularities are necessary for us to have a good description of the framework of varieties. For example, it is impossible to formulate minimal model theory for higher-dimensional cases without singularities. Another example is that the moduli spaces of varieties have natural compactification, the boundaries of which correspond to singular varieties. A remarkable fact is that the study of singularities is developing and people are beginning to see that singularities are interesting and can be handled by human beings. This book is a handy introduction to singularities for anyone interested in singularities. The focus is on an isolated singularity in an algebraic variety. After preparation of varieties, sheaves, and homological algebra, some known results about 2-dim ensional isolated singularities are introduced. Then a classification of higher-dimensional isolated singularities is shown according to plurigenera and the behavior of singularities under a deformation is studied.
Rational Points on Varieties
Author: Bjorn Poonen
Publisher: American Mathematical Society
ISBN: 1470474581
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University
Publisher: American Mathematical Society
ISBN: 1470474581
Category : Mathematics
Languages : en
Pages : 357
Book Description
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere. The origins of arithmetic (or Diophantine) geometry can be traced back to antiquity, and it remains a lively and wide research domain up to our days. The book by Bjorn Poonen, a leading expert in the field, opens doors to this vast field for many readers with different experiences and backgrounds. It leads through various algebraic geometric constructions towards its central subject: obstructions to existence of rational points. —Yuri Manin, Max-Planck-Institute, Bonn It is clear that my mathematical life would have been very different if a book like this had been around at the time I was a student. —Hendrik Lenstra, University Leiden Understanding rational points on arbitrary algebraic varieties is the ultimate challenge. We have conjectures but few results. Poonen's book, with its mixture of basic constructions and openings into current research, will attract new generations to the Queen of Mathematics. —Jean-Louis Colliot-Thélène, Université Paris-Sud A beautiful subject, handled by a master. —Joseph Silverman, Brown University
Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.