A Compendium Of Musical Mathematics

A Compendium Of Musical Mathematics PDF Author: Franck Jedrzejewski
Publisher: World Scientific
ISBN: 9811284385
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewin's Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.

A Compendium Of Musical Mathematics

A Compendium Of Musical Mathematics PDF Author: Franck Jedrzejewski
Publisher: World Scientific
ISBN: 9811284385
Category : Mathematics
Languages : en
Pages : 286

Get Book Here

Book Description
The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewin's Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.

Musical Mathematics

Musical Mathematics PDF Author: Cris Forster
Publisher: Chronicle Books
ISBN: 9780811874076
Category : Music
Languages : en
Pages : 0

Get Book Here

Book Description
Musical Mathematics is the definitive tome for the adventurous musician. Integrating mathematics, music history, and hands-on experience, this volume serves as a comprehensive guide to the tunings and scales of acoustic instruments from around the world. Author, composer, and builder Cris Forster illuminates the mathematical principles of acoustic music, offering practical information and new discoveries about both traditional and innovative instruments.With this knowledge readers can improve, or begin to build, their own instruments inspired by Forster's creationsshown in 16 color plates. For those ready to step outside musical conventions and those whose curiosity about the science of sound is never satisfied, Musical Mathematics is the map to a new musical world.

Science, Music, And Mathematics: The Deepest Connections

Science, Music, And Mathematics: The Deepest Connections PDF Author: Michael Edgeworth Mcintyre
Publisher: World Scientific
ISBN: 9811240752
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Professor Michael Edgeworth McIntyre is an eminent scientist who has also had a part-time career as a musician. From a lifetime's thinking, he offers this extraordinary synthesis exposing the deepest connections between science, music, and mathematics, while avoiding equations and technical jargon. He begins with perception psychology and the dichotomization instinct and then takes us through biological evolution, human language, and acausality illusions all the way to the climate crisis and the weaponization of the social media, and beyond that into the deepest parts of theoretical physics — demonstrating our unconscious mathematical abilities.He also has an important message of hope for the future. Contrary to popular belief, biological evolution has given us not only the nastiest, but also the most compassionate and cooperative parts of human nature. This insight comes from recognizing that biological evolution is more than a simple competition between selfish genes. Rather, he suggests, in some ways it is more like turbulent fluid flow, a complex process spanning a vast range of timescales.Professor McIntyre is a Fellow of the Royal Society of London (FRS) and has worked on problems as diverse as the Sun's magnetic interior, the Antarctic ozone hole, jet streams in the atmosphere, and the psychophysics of violin sound. He has long been interested in how different branches of science can better communicate with each other and with the public, harnessing aspects of neuroscience and psychology that point toward the deep 'lucidity principles' that underlie skilful communication.

Music: A Mathematical Offering

Music: A Mathematical Offering PDF Author: Dave Benson
Publisher: Cambridge University Press
ISBN: 0521853877
Category : Mathematics
Languages : en
Pages : 426

Get Book Here

Book Description
This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.

Creative Mathematics

Creative Mathematics PDF Author: H. S. Wall
Publisher: American Mathematical Soc.
ISBN: 0883857502
Category : Mathematics
Languages : en
Pages : 219

Get Book Here

Book Description
Professor H. S. Wall (1902-1971) developed Creative Mathematics over a period of many years of working with students at the University of Texas, Austin. His aim was to lead students to develop their mathematical abilities, to help them learn the art of mathematics, and to teach them to create mathematical ideas. This book, according to Wall, ``is not a compendium of mathematical facts and inventions to be read over as a connoisseur of art looks over paintings. It is, instead, a sketchbook in which readers try their hands at mathematical discovery.'' In less than two hundred pages, he takes the reader on a stimulating tour starting with numbers, and then moving on to simple graphs, the integral, simple surfaces, successive approximations, linear spaces of simple graphs, and concluding with mechanical systems. The book is self contained, and assumes little formal mathematical background on the part of the reader.

Rubik's Cubic Compendium

Rubik's Cubic Compendium PDF Author: Ernő Rubik
Publisher: Oxford University Press, USA
ISBN:
Category : Games & Activities
Languages : en
Pages : 248

Get Book Here

Book Description
Co-written by the cube's inventor, this book serves as a comprehensive guide to the Rubik's cube. It opens up a wealth of fascinating mathematics and offers a vast number of new ideas and possibilities to those who have solved the cube as well as to those who remain puzzled.

The Princeton Companion to Mathematics

The Princeton Companion to Mathematics PDF Author: Timothy Gowers
Publisher: Princeton University Press
ISBN: 1400830397
Category : Mathematics
Languages : en
Pages : 1057

Get Book Here

Book Description
The ultimate mathematics reference book This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries—written especially for this book by some of the world's leading mathematicians—that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music—and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors include: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, and Doron Zeilberger

A Compendium of Musical Mathematics

A Compendium of Musical Mathematics PDF Author: Franck Jedrzejewski
Publisher: World Scientific Publishing Company
ISBN: 9789811284366
Category : Mathematics
Languages : en
Pages : 0

Get Book Here

Book Description
The purpose of this book is to provide a concise introduction to the mathematical theory of music, opening each chapter to the most recent research. Despite the complexity of some sections, the book can be read by a large audience. Many examples illustrate the concepts introduced. The book is divided into 9 chapters.In the first chapter, we tackle the question of the classification of chords and scales. Chapter 2 is a mathematical presentation of David Lewin's Generalized Interval Systems. Chapter 3 offers a new theory of diatonicity in equal-tempered universes. Chapter 4 presents the Neo-Riemannian theories based on the work of David Lewin, Richard Cohn and Henry Klumpenhouwer. Chapter 5 is devoted to the application of word combinatorics to music. Chapter 6 studies the rhythmic canons and the tessellation of the line. Chapter 7 is devoted to serial knots. Chapter 8 presents combinatorial designs and their applications to music. The last chapter, chapter 9, is dedicated to the study of tuning systems.

Bui's Maths Book Vol. 1

Bui's Maths Book Vol. 1 PDF Author: Rhs White
Publisher: Trafford Publishing
ISBN: 1425178685
Category : Mathematics
Languages : en
Pages : 599

Get Book Here

Book Description
Bui's Maths Book is in two volumes. Volume 1 contains 15 chapters and volume 2 contains 13 chapters. Chapter 1 introduces the number systems invented by the Babylonians, the Egyptians, the Greeks, the Chinese, the Etruscans, the Maya and the Hindus and Chapter 2 shows how Euclid's axioms quickly build up into a theory of plane geometry. Chapters 3 and 4 concern Pythagoras's theorem and his ideas on the musical scale and a number of results based upon the Pythagoras diagram. Chapters 5 to 8 show how the binary and hexadecimal number systems with the algebra of George Boole can be applied the design of computer logic circuits. Chapter 9 illustrates a mathematical approach to problem solving by discussing how to find the length of a roll of paper, how to stop a table from wobbling, how to make a snooker ball return to its starting position and how to design a football. Chapter 10 concerns topology and Chapter 11 deals with Descartes coordinate geometry. Chapters 12 and 13 deal with matrices, transformations and the theory of groups. Chapter 14 uses mathematical induction to sum series and prove the binomial theorem and Chapter 15 discusses probability. Volume 2 continues the story with chapters on sequences and series, Fibonacci, trigonometry, areas and volumes, Ceva, Menelaus and Morley, circles, special relativity, complex numbers, calculus and conics. There are many solved examples and exercises, all with answers. It should appeal both to the general reader and to the mathematics specialist.

Functions and Graphs

Functions and Graphs PDF Author: I. M. Gelfand
Publisher: Courier Corporation
ISBN: 0486317137
Category : Mathematics
Languages : en
Pages : 116

Get Book Here

Book Description
This text demonstrates the fundamentals of graph theory. The first part employs simple functions to analyze basics; second half deals with linear functions, quadratic trinomials, linear fractional functions, power functions, rational functions. 1969 edition.