Author: Anuj Kumar
Publisher: CRC Press
ISBN: 1040113583
Category : Science
Languages : en
Pages : 335
Book Description
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices
Author: Anuj Kumar
Publisher: CRC Press
ISBN: 1040113583
Category : Science
Languages : en
Pages : 335
Book Description
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
Publisher: CRC Press
ISBN: 1040113583
Category : Science
Languages : en
Pages : 335
Book Description
Two-dimensional semiconducting materials (2D-SCMs) are the subject of intensive study in the fields of photonics and optoelectronics because of their unusual optical, electrical, thermal, and mechanical properties. The main objective of 2D Semiconducting Materials for Electronic, Photonic, and Optoelectronic Devices is to provide current, state-of-the-art knowledge of two-dimensional semiconducting materials for various applications. Two-dimensional semiconducting materials are the basic building blocks for making photodiodes, light-emitting diodes, light-detecting devices, data storage, telecommunications, and energy-storage devices. When it comes to two-dimensional semiconducting materials, electronic, photonic, and optoelectronic applications, as well as future plans for improving performance, no modern book covers as much ground. The planned book will fill such gaps by offering a comprehensive analysis of two-dimensional semiconducting materials. This book covers a range of advanced 2D materials, their fundamentals, and the chemistry for many emerging applications. All the chapters are covered by experts in these areas around the world, making this a suitable textbook for students and providing new guidelines to researchers and industries. • Covers topics such as fundamentals and advanced knowledge of two-dimensional semiconducting materials • Provides details about the recent methods used for the synthesis, characterization, and applications of two-dimensional semiconducting materials • Covers the state-of-the-art development in two-dimensional semiconducting materials and their emerging applications This book provides directions to students, scientists, and researchers in semiconductors and related disciplines to help them better understand the physics, characteristics, and applications of 2D semiconductors.
2D Materials
Author: Phaedon Avouris
Publisher: Cambridge University Press
ISBN: 1316738132
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
Publisher: Cambridge University Press
ISBN: 1316738132
Category : Technology & Engineering
Languages : en
Pages : 521
Book Description
Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.
2D Materials for Photonic and Optoelectronic Applications
Author: Qiaoliang Bao
Publisher: Woodhead Publishing
ISBN: 0128154357
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
2D Materials for Photonic and Optoelectronic Applications introduces readers to two-dimensional materials and their properties (optical, electronic, spin and plasmonic), various methods of synthesis, and possible applications, with a strong focus on novel findings and technological challenges. The two-dimensional materials reviewed include hexagonal boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, black phosphorous and other novel materials. This book will be ideal for students and researchers in materials science, photonics, electronics, nanotechnology and condensed matter physics and chemistry, providing background for both junior investigators and timely reviews for seasoned researchers. - Provides an in-depth look at boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, and more - Reviews key applications for photonics and optoelectronics, including photodetectors, optical signal processing, light-emitting diodes and photovoltaics - Addresses key technological challenges for the realization of optoelectronic applications and comments on future solutions
Publisher: Woodhead Publishing
ISBN: 0128154357
Category : Technology & Engineering
Languages : en
Pages : 338
Book Description
2D Materials for Photonic and Optoelectronic Applications introduces readers to two-dimensional materials and their properties (optical, electronic, spin and plasmonic), various methods of synthesis, and possible applications, with a strong focus on novel findings and technological challenges. The two-dimensional materials reviewed include hexagonal boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, black phosphorous and other novel materials. This book will be ideal for students and researchers in materials science, photonics, electronics, nanotechnology and condensed matter physics and chemistry, providing background for both junior investigators and timely reviews for seasoned researchers. - Provides an in-depth look at boron nitride, silicene, germanene, topological insulators, transition metal dichalcogenides, and more - Reviews key applications for photonics and optoelectronics, including photodetectors, optical signal processing, light-emitting diodes and photovoltaics - Addresses key technological challenges for the realization of optoelectronic applications and comments on future solutions
Two-dimensional Materials
Author: Pramoda Kumar Nayak
Publisher: BoD – Books on Demand
ISBN: 9535125540
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
Publisher: BoD – Books on Demand
ISBN: 9535125540
Category : Technology & Engineering
Languages : en
Pages : 282
Book Description
There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.
2D Metal Carbides and Nitrides (MXenes)
Author: Babak Anasori
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 530
Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.
Publisher: Springer Nature
ISBN: 3030190269
Category : Technology & Engineering
Languages : en
Pages : 530
Book Description
This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.
Advanced Memory Technology
Author: Ye Zhou
Publisher: Royal Society of Chemistry
ISBN: 1839169958
Category : Technology & Engineering
Languages : en
Pages : 641
Book Description
Advanced memory technologies are impacting the information era, representing a vibrant research area of huge interest in the electronics industry. The demand for data storage, computing performance and energy efficiency is increasing exponentially and will exceed the capabilities of current information technologies. Alternatives to traditional silicon technology and novel memory principles are expected to meet the need of modern data-intensive applications such as “big data” and artificial intelligence (AI). Functional materials or methodologies may find a key role in building novel, high speed and low power consumption computing and data storage systems. This book covers functional materials and devices in the data storage areas, alongside electronic devices with new possibilities for future computing, from neuromorphic next generation AI to in-memory computing. Summarizing different memory materials and devices to emphasize the future applications, graduate students and researchers can systematically learn and understand the design, materials characteristics, device operation principles, specialized device applications and mechanisms of the latest reported memory materials and devices.
Publisher: Royal Society of Chemistry
ISBN: 1839169958
Category : Technology & Engineering
Languages : en
Pages : 641
Book Description
Advanced memory technologies are impacting the information era, representing a vibrant research area of huge interest in the electronics industry. The demand for data storage, computing performance and energy efficiency is increasing exponentially and will exceed the capabilities of current information technologies. Alternatives to traditional silicon technology and novel memory principles are expected to meet the need of modern data-intensive applications such as “big data” and artificial intelligence (AI). Functional materials or methodologies may find a key role in building novel, high speed and low power consumption computing and data storage systems. This book covers functional materials and devices in the data storage areas, alongside electronic devices with new possibilities for future computing, from neuromorphic next generation AI to in-memory computing. Summarizing different memory materials and devices to emphasize the future applications, graduate students and researchers can systematically learn and understand the design, materials characteristics, device operation principles, specialized device applications and mechanisms of the latest reported memory materials and devices.
Flexible Carbon-based Electronics
Author: Paolo Samorì
Publisher: John Wiley & Sons
ISBN: 3527341919
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This third volume in the Advanced Nanocarbon Materials series covers the topic of flexible electronics both from a materials and an applications perspective. Comprehensive in its scope, the monograph examines organic, inorganic and composite materials with a section devoted to carbon-based materials with a special focus on the generation and properties of 2D materials. It also presents carbon modifications and derivatives, such as carbon nanotubes, graphene oxide and diamonds. In terms of the topical applications covered these include, but are not limited to, flexible displays, organic electronics, transistors, integrated circuits, semiconductors and solar cells. These offer perspectives for today?s energy and healthcare challenges, such as electrochemical energy storage and wearable devices. Finally, a section on fundamental properties and characterization approaches of flexible electronics rounds off the book. Each contribution points out the importance of the structure-function relationship for the target-oriented fabrication of electronic devices, enabling the design of complex components.
Publisher: John Wiley & Sons
ISBN: 3527341919
Category : Technology & Engineering
Languages : en
Pages : 334
Book Description
This third volume in the Advanced Nanocarbon Materials series covers the topic of flexible electronics both from a materials and an applications perspective. Comprehensive in its scope, the monograph examines organic, inorganic and composite materials with a section devoted to carbon-based materials with a special focus on the generation and properties of 2D materials. It also presents carbon modifications and derivatives, such as carbon nanotubes, graphene oxide and diamonds. In terms of the topical applications covered these include, but are not limited to, flexible displays, organic electronics, transistors, integrated circuits, semiconductors and solar cells. These offer perspectives for today?s energy and healthcare challenges, such as electrochemical energy storage and wearable devices. Finally, a section on fundamental properties and characterization approaches of flexible electronics rounds off the book. Each contribution points out the importance of the structure-function relationship for the target-oriented fabrication of electronic devices, enabling the design of complex components.
Printing of Graphene and Related 2D Materials
Author: Leonard W. T. Ng
Publisher: Springer
ISBN: 331991572X
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
This book discusses the functional ink systems of graphene and related two-dimensional (2D) layered materials in the context of their formulation and potential for various applications, including in electronics, optoelectronics, energy, sensing, and composites using conventional graphics and 3D printing technologies. The authors explore the economic landscape of 2D materials and introduce readers to fundamental properties and production technologies. They also discuss major graphics printing technologies and conventional commercial printing processes that can be used for printing 2D material inks, as well as their specific strengths and weaknesses as manufacturing platforms. Special attention is also paid to scalable production methods for ink formulation, making this an ideal book for students and researchers in academia or industry, who work with functional graphene and other 2D material ink systems and their applications. Explains the state-of-the-art 2D material production technologies that can be manufactured at the industrial scale for functional ink formulation; Provides starting formulation examples of 2D material, functional inks for specific printing methods and their characterization techniques; Reviews existing demonstrations of applications related to printed 2D materials and provides possible future development directions while highlighting current knowledge gaps; Gives a snapshot and forecast of the commercial market for printed GRMs based on the current state of technologies and existing patents.
Publisher: Springer
ISBN: 331991572X
Category : Technology & Engineering
Languages : en
Pages : 226
Book Description
This book discusses the functional ink systems of graphene and related two-dimensional (2D) layered materials in the context of their formulation and potential for various applications, including in electronics, optoelectronics, energy, sensing, and composites using conventional graphics and 3D printing technologies. The authors explore the economic landscape of 2D materials and introduce readers to fundamental properties and production technologies. They also discuss major graphics printing technologies and conventional commercial printing processes that can be used for printing 2D material inks, as well as their specific strengths and weaknesses as manufacturing platforms. Special attention is also paid to scalable production methods for ink formulation, making this an ideal book for students and researchers in academia or industry, who work with functional graphene and other 2D material ink systems and their applications. Explains the state-of-the-art 2D material production technologies that can be manufactured at the industrial scale for functional ink formulation; Provides starting formulation examples of 2D material, functional inks for specific printing methods and their characterization techniques; Reviews existing demonstrations of applications related to printed 2D materials and provides possible future development directions while highlighting current knowledge gaps; Gives a snapshot and forecast of the commercial market for printed GRMs based on the current state of technologies and existing patents.
Nanoscale Semiconductor Lasers
Author: Cunzhu Tong
Publisher: Elsevier
ISBN: 0128141638
Category : Science
Languages : en
Pages : 208
Book Description
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. - Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications - Demonstrates how to connect different classes of material to specific applications - Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities
Publisher: Elsevier
ISBN: 0128141638
Category : Science
Languages : en
Pages : 208
Book Description
Nanoscale Semiconductor Lasers focuses on specific issues relating to laser nanomaterials and their use in laser technology. The book presents both fundamental theory and a thorough overview of the diverse range of applications that have been developed using laser technology based on novel nanostructures and nanomaterials. Technologies covered include nanocavity lasers, carbon dot lasers, 2D material lasers, plasmonic lasers, spasers, quantum dot lasers, quantum dash and nanowire lasers. Each chapter outlines the fundamentals of the topic and examines material and optical properties set alongside device properties, challenges, issues and trends. Dealing with a scope of materials from organic to carbon nanostructures and nanowires to semiconductor quantum dots, this book will be of interest to graduate students, researchers and scientific professionals in a wide range of fields relating to laser development and semiconductor technologies. - Provides an overview of the active field of nanostructured lasers, illustrating the latest topics and applications - Demonstrates how to connect different classes of material to specific applications - Gives an overview of several approaches to confine and control light emission and amplification using nanostructured materials and nano-scale cavities
Two-Dimensional Transition-Metal Dichalcogenides
Author: Alexander V. Kolobov
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.
Publisher: Springer
ISBN: 3319314505
Category : Technology & Engineering
Languages : en
Pages : 545
Book Description
This book summarizes the current status of theoretical and experimental progress in 2 dimensional graphene-like monolayers and few-layers of transition metal dichalcogenides (TMDCs). Semiconducting monolayer TMDCs, due to the presence of a direct gap, significantly extend the potential of low-dimensional nanomaterials for applications in nanoelectronics and nano-optoelectronics as well as flexible nano-electronics with unprecedented possibilities to control the gap by external stimuli. Strong quantum confinement results in extremely high exciton binding energies which forms an interesting platform for both fundamental studies and device applications. Breaking of spatial inversion symmetry in monolayers results in strong spin-valley coupling potentially leading to their use in valleytronics. Starting with the basic chemistry of transition metals, the reader is introduced to the rich field of transition metal dichalcogenides. After a chapter on three dimensional crystals and a description of top-down and bottom-up fabrication methods of few-layer and single layer structures, the fascinating world of two-dimensional TMDCs structures is presented with their unique atomic, electronic, and magnetic properties. The book covers in detail particular features associated with decreased dimensionality such as stability and phase-transitions in monolayers, the appearance of a direct gap, large binding energy of 2D excitons and trions and their dynamics, Raman scattering associated with decreased dimensionality, extraordinarily strong light-matter interaction, layer-dependent photoluminescence properties, new physics associated with the destruction of the spatial inversion symmetry of the bulk phase, spin-orbit and spin-valley couplings. The book concludes with chapters on engineered heterostructures and device applications such as a monolayer MoS2 transistor. Considering the explosive interest in physics and applications of two-dimensional materials, this book is a valuable source of information for material scientists and engineers working in the field as well as for the graduate students majoring in materials science.