Author: Li Huishi
Publisher: Springer Science & Business Media
ISBN: 9401587590
Category : Mathematics
Languages : en
Pages : 263
Book Description
In Commutative Algebra certain /-adic filtrations of Noetherian rings, i.e. the so-called Zariski rings, are at the basis of singularity theory. Apart from that it is mainly in the context of Homological Algebra that filtered rings and the associated graded rings are being studied not in the least because of the importance of double complexes and their spectral sequences. Where non-commutative algebra is concerned, applications of the theory of filtrations were mainly restricted to the study of enveloping algebras of Lie algebras and, more extensively even, to the study of rings of differential operators. It is clear that the operation of completion at a filtration has an algebraic genotype but a topological fenotype and it is exactly the symbiosis of Algebra and Topology that works so well in the commutative case, e.g. ideles and adeles in number theory or the theory of local fields, Puisseux series etc, .... . In Non commutative algebra the bridge between Algebra and Analysis is much more narrow and it seems that many analytic techniques of the non-commutative kind are still to be developed. Nevertheless there is the magnificent example of the analytic theory of rings of differential operators and 1J-modules a la Kashiwara-Shapira.
Zariskian Filtrations
Rings, Groups, and Algebras
Author: X. Cao
Publisher: CRC Press
ISBN: 1000116794
Category : Mathematics
Languages : en
Pages : 349
Book Description
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
Publisher: CRC Press
ISBN: 1000116794
Category : Mathematics
Languages : en
Pages : 349
Book Description
"Integrates and summarizes the most significant developments made by Chinese mathematicians in rings, groups, and algebras since the 1950s. Presents both survey articles and recent research results. Examines important topics in Hopf algebra, representation theory, semigroups, finite groups, homology algebra, module theory, valuation theory, and more."
Grbner Bases in Ring Theory
Author: Huishi Li
Publisher: World Scientific
ISBN: 9814365130
Category : Mathematics
Languages : en
Pages : 295
Book Description
This monograph strives to introduce a solid foundation on the usage of Grbner bases in ring theory by focusing on noncommutative associative algebras defined by relations over a field K. It also reveals the intrinsic structural properties of Grbner bases, presents a constructive PBW theory in a quite extensive context and, along the routes built via the PBW theory, the book demonstrates novel methods of using Grbner bases in determining and recognizing many more structural properties of algebras, such as the Gelfand?Kirillov dimension, Noetherianity, (semi-)primeness, PI-property, finiteness of global homological dimension, Hilbert series, (non-)homogeneous p-Koszulity, PBW-deformation, and regular central extension.With a self-contained and constructive Grbner basis theory for algebras with a skew multiplicative K-basis, numerous illuminating examples are constructed in the book for illustrating and extending the topics studied. Moreover, perspectives of further study on the topics are prompted at appropriate points. This book can be of considerable interest to researchers and graduate students in computational (computer) algebra, computational (noncommutative) algebraic geometry; especially for those working on the structure theory of rings, algebras and their modules (representations).
Publisher: World Scientific
ISBN: 9814365130
Category : Mathematics
Languages : en
Pages : 295
Book Description
This monograph strives to introduce a solid foundation on the usage of Grbner bases in ring theory by focusing on noncommutative associative algebras defined by relations over a field K. It also reveals the intrinsic structural properties of Grbner bases, presents a constructive PBW theory in a quite extensive context and, along the routes built via the PBW theory, the book demonstrates novel methods of using Grbner bases in determining and recognizing many more structural properties of algebras, such as the Gelfand?Kirillov dimension, Noetherianity, (semi-)primeness, PI-property, finiteness of global homological dimension, Hilbert series, (non-)homogeneous p-Koszulity, PBW-deformation, and regular central extension.With a self-contained and constructive Grbner basis theory for algebras with a skew multiplicative K-basis, numerous illuminating examples are constructed in the book for illustrating and extending the topics studied. Moreover, perspectives of further study on the topics are prompted at appropriate points. This book can be of considerable interest to researchers and graduate students in computational (computer) algebra, computational (noncommutative) algebraic geometry; especially for those working on the structure theory of rings, algebras and their modules (representations).
Algebraic Geometry for Associative Algebras
Author: Freddy Van Oystaeyen
Publisher: CRC Press
ISBN: 1482270528
Category : Mathematics
Languages : en
Pages : 302
Book Description
This work focuses on the association of methods from topology, category and sheaf theory, algebraic geometry, noncommutative and homological algebras, quantum groups and spaces, rings of differential operation, Cech and sheaf cohomology theories, and dimension theories to create a blend of noncommutative algebraic geometry. It offers a scheme theor
Publisher: CRC Press
ISBN: 1482270528
Category : Mathematics
Languages : en
Pages : 302
Book Description
This work focuses on the association of methods from topology, category and sheaf theory, algebraic geometry, noncommutative and homological algebras, quantum groups and spaces, rings of differential operation, Cech and sheaf cohomology theories, and dimension theories to create a blend of noncommutative algebraic geometry. It offers a scheme theor
Analytic D-Modules and Applications
Author: Jan-Erik Björk
Publisher: Springer Science & Business Media
ISBN: 9401707170
Category : Mathematics
Languages : en
Pages : 588
Book Description
This is the first monograph to be published on analytic D-modules and it offers a complete and systematic treatment of the foundations together with a thorough discussion of such modern topics as the Riemann--Hilbert correspondence, Bernstein--Sata polynomials and a large variety of results concerning microdifferential analysis. Analytic D-module theory studies holomorphic differential systems on complex manifolds. It brings new insight and methods into many areas, such as infinite dimensional representations of Lie groups, asymptotic expansions of hypergeometric functions, intersection cohomology on Kahler manifolds and the calculus of residues in several complex variables. The book contains seven chapters and has an extensive appendix which is devoted to the most important tools which are used in D-module theory. This includes an account of sheaf theory in the context of derived categories, a detailed study of filtered non-commutative rings and homological algebra, and the basic material in symplectic geometry and stratifications on complex analytic sets. For graduate students and researchers.
Publisher: Springer Science & Business Media
ISBN: 9401707170
Category : Mathematics
Languages : en
Pages : 588
Book Description
This is the first monograph to be published on analytic D-modules and it offers a complete and systematic treatment of the foundations together with a thorough discussion of such modern topics as the Riemann--Hilbert correspondence, Bernstein--Sata polynomials and a large variety of results concerning microdifferential analysis. Analytic D-module theory studies holomorphic differential systems on complex manifolds. It brings new insight and methods into many areas, such as infinite dimensional representations of Lie groups, asymptotic expansions of hypergeometric functions, intersection cohomology on Kahler manifolds and the calculus of residues in several complex variables. The book contains seven chapters and has an extensive appendix which is devoted to the most important tools which are used in D-module theory. This includes an account of sheaf theory in the context of derived categories, a detailed study of filtered non-commutative rings and homological algebra, and the basic material in symplectic geometry and stratifications on complex analytic sets. For graduate students and researchers.
Interactions Between Ring Theory and Representations of Algebras
Author: Freddy Van Oystaeyen
Publisher: CRC Press
ISBN: 9780824703677
Category : Mathematics
Languages : en
Pages : 470
Book Description
This work is based on a set of lectures and invited papers presented at a meeting in Murcia, Spain, organized by the European Commission's Training and Mobility of Researchers (TMR) Programme. It contains information on the structure of representation theory of groups and algebras and on general ring theoretic methods related to the theory.
Publisher: CRC Press
ISBN: 9780824703677
Category : Mathematics
Languages : en
Pages : 470
Book Description
This work is based on a set of lectures and invited papers presented at a meeting in Murcia, Spain, organized by the European Commission's Training and Mobility of Researchers (TMR) Programme. It contains information on the structure of representation theory of groups and algebras and on general ring theoretic methods related to the theory.
The Hauptvermutung Book
Author: A.A. Ranicki
Publisher: Springer Science & Business Media
ISBN: 9401733430
Category : Mathematics
Languages : en
Pages : 192
Book Description
The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc.
Publisher: Springer Science & Business Media
ISBN: 9401733430
Category : Mathematics
Languages : en
Pages : 192
Book Description
The Hauptvermutung is the conjecture that any two triangulations of a poly hedron are combinatorially equivalent. The conjecture was formulated at the turn of the century, and until its resolution was a central problem of topology. Initially, it was verified for low-dimensional polyhedra, and it might have been expected that furt her development of high-dimensional topology would lead to a verification in all dimensions. However, in 1961 Milnor constructed high-dimensional polyhedra with combinatorially inequivalent triangulations, disproving the Hauptvermutung in general. These polyhedra were not manifolds, leaving open the Hauptvermu tung for manifolds. The development of surgery theory led to the disproof of the high-dimensional manifold Hauptvermutung in the late 1960's. Unfortunately, the published record of the manifold Hauptvermutung has been incomplete, as was forcefully pointed out by Novikov in his lecture at the Browder 60th birthday conference held at Princeton in March 1994. This volume brings together the original 1967 papers of Casson and Sulli van, and the 1968/1972 'Princeton notes on the Hauptvermutung' of Armstrong, Rourke and Cooke, making this work physically accessible. These papers include several other results which have become part of the folklore but of which proofs have never been published. My own contribution is intended to serve as an intro duction to the Hauptvermutung, and also to give an account of some more recent developments in the area. In preparing the original papers for publication, only minimal changes of punctuation etc.
New Trends in Noncommutative Algebra
Author: Ara, Pere
Publisher: American Mathematical Soc.
ISBN: 0821852973
Category : Mathematics
Languages : en
Pages : 326
Book Description
This volume contains the proceedings of the conference `New Trends in Noncommutative Algebra', held at the University of Washington, Seattle, in August 2010. The articles will provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Calabi-Yau algebras, quantum algebras and deformation quantization, Poisson algebras, group algebras, and noncommutative Iwasawa algebras.
Publisher: American Mathematical Soc.
ISBN: 0821852973
Category : Mathematics
Languages : en
Pages : 326
Book Description
This volume contains the proceedings of the conference `New Trends in Noncommutative Algebra', held at the University of Washington, Seattle, in August 2010. The articles will provide researchers and graduate students with an indispensable overview of topics of current interest. Specific fields covered include: noncommutative algebraic geometry, representation theory, Calabi-Yau algebras, quantum algebras and deformation quantization, Poisson algebras, group algebras, and noncommutative Iwasawa algebras.
Noncommutative Gröbner Bases and Filtered-Graded Transfer
Author: Huishi Li
Publisher: Springer
ISBN: 3540457658
Category : Mathematics
Languages : en
Pages : 205
Book Description
This self-contained monograph is the first to feature the intersection of the structure theory of noncommutative associative algebras and the algorithmic aspect of Groebner basis theory. A double filtered-graded transfer of data in using noncommutative Groebner bases leads to effective exploitation of the solutions to several structural-computational problems, e.g., an algorithmic recognition of quadric solvable polynomial algebras, computation of GK-dimension and multiplicity for modules, and elimination of variables in noncommutative setting. All topics included deal with algebras of (q-)differential operators as well as some other operator algebras, enveloping algebras of Lie algebras, typical quantum algebras, and many of their deformations.
Publisher: Springer
ISBN: 3540457658
Category : Mathematics
Languages : en
Pages : 205
Book Description
This self-contained monograph is the first to feature the intersection of the structure theory of noncommutative associative algebras and the algorithmic aspect of Groebner basis theory. A double filtered-graded transfer of data in using noncommutative Groebner bases leads to effective exploitation of the solutions to several structural-computational problems, e.g., an algorithmic recognition of quadric solvable polynomial algebras, computation of GK-dimension and multiplicity for modules, and elimination of variables in noncommutative setting. All topics included deal with algebras of (q-)differential operators as well as some other operator algebras, enveloping algebras of Lie algebras, typical quantum algebras, and many of their deformations.
A Primer of Algebraic Geometry
Author: Huishi Li
Publisher: CRC Press
ISBN: 1482270331
Category : Mathematics
Languages : en
Pages : 393
Book Description
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."
Publisher: CRC Press
ISBN: 1482270331
Category : Mathematics
Languages : en
Pages : 393
Book Description
"Presents the structure of algebras appearing in representation theory of groups and algebras with general ring theoretic methods related to representation theory. Covers affine algebraic sets and the nullstellensatz, polynomial and rational functions, projective algebraic sets. Groebner basis, dimension of algebraic sets, local theory, curves and elliptic curves, and more."