Author: Boris Zilber
Publisher: Cambridge University Press
ISBN: 1139486519
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
Zariski Geometries
Author: Boris Zilber
Publisher: Cambridge University Press
ISBN: 1139486519
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
Publisher: Cambridge University Press
ISBN: 1139486519
Category : Mathematics
Languages : en
Pages : 225
Book Description
This book presents methods and results from the theory of Zariski structures and discusses their applications in geometry as well as various other mathematical fields. Beginning with a crash course in model theory, this book will suit not only model theorists but also readers with a more classical geometric background.
Model Theory and Algebraic Geometry
Author: Elisabeth Bouscaren
Publisher: Springer
ISBN: 3540685219
Category : Mathematics
Languages : en
Pages : 223
Book Description
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Publisher: Springer
ISBN: 3540685219
Category : Mathematics
Languages : en
Pages : 223
Book Description
This introduction to the recent exciting developments in the applications of model theory to algebraic geometry, illustrated by E. Hrushovski's model-theoretic proof of the geometric Mordell-Lang Conjecture starts from very basic background and works up to the detailed exposition of Hrushovski's proof, explaining the necessary tools and results from stability theory on the way. The first chapter is an informal introduction to model theory itself, making the book accessible (with a little effort) to readers with no previous knowledge of model theory. The authors have collaborated closely to achieve a coherent and self- contained presentation, whereby the completeness of exposition of the chapters varies according to the existence of other good references, but comments and examples are always provided to give the reader some intuitive understanding of the subject.
Model Theory, Algebra, and Geometry
Author: Deirdre Haskell
Publisher: Cambridge University Press
ISBN: 9780521780681
Category : Mathematics
Languages : en
Pages : 244
Book Description
Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.
Publisher: Cambridge University Press
ISBN: 9780521780681
Category : Mathematics
Languages : en
Pages : 244
Book Description
Model theory has made substantial contributions to semialgebraic, subanalytic, p-adic, rigid and diophantine geometry. These applications range from a proof of the rationality of certain Poincare series associated to varieties over p-adic fields, to a proof of the Mordell-Lang conjecture for function fields in positive characteristic. In some cases (such as the latter) it is the most abstract aspects of model theory which are relevant. This book, originally published in 2000, arising from a series of introductory lectures for graduate students, provides the necessary background to understanding both the model theory and the mathematics behind these applications. The book is unique in that the whole spectrum of contemporary model theory (stability, simplicity, o-minimality and variations) is covered and diverse areas of geometry (algebraic, diophantine, real analytic, p-adic, and rigid) are introduced and discussed, all by leading experts in their fields.
The Unreal Life of Oscar Zariski
Author: Carol Parikh
Publisher: Academic Press
ISBN: 1483265722
Category : Biography & Autobiography
Languages : en
Pages : 293
Book Description
The Unreal Life of Oscar Zariski records the life of Oscar Zariski that is based upon Carol Parikh's interviews with his family, colleagues, students, and his own memories from tape-recorded interviews conducted before his death in 1986. This book describes Oscar Zariski's work in mathematics that perpetually altered the foundations of algebraic geometry. The powerful tools he forged from the ideas of algebra allowed him to penetrate classical problems with a clarity and depth that brought a rigor to the way algebraic geometers carry out proofs. The strength of his work was matched by his forcefulness as a teacher, and the students he trained at Johns Hopkins and later at Harvard have made essential contributions to many areas of mathematics. This publication is beneficial to students and researchers interested in Oscar Zariski's life and work in mathematics.
Publisher: Academic Press
ISBN: 1483265722
Category : Biography & Autobiography
Languages : en
Pages : 293
Book Description
The Unreal Life of Oscar Zariski records the life of Oscar Zariski that is based upon Carol Parikh's interviews with his family, colleagues, students, and his own memories from tape-recorded interviews conducted before his death in 1986. This book describes Oscar Zariski's work in mathematics that perpetually altered the foundations of algebraic geometry. The powerful tools he forged from the ideas of algebra allowed him to penetrate classical problems with a clarity and depth that brought a rigor to the way algebraic geometers carry out proofs. The strength of his work was matched by his forcefulness as a teacher, and the students he trained at Johns Hopkins and later at Harvard have made essential contributions to many areas of mathematics. This publication is beneficial to students and researchers interested in Oscar Zariski's life and work in mathematics.
Algebraic Geometry
Author: Robin Hartshorne
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Publisher: Springer Science & Business Media
ISBN: 1475738498
Category : Mathematics
Languages : en
Pages : 511
Book Description
An introduction to abstract algebraic geometry, with the only prerequisites being results from commutative algebra, which are stated as needed, and some elementary topology. More than 400 exercises distributed throughout the book offer specific examples as well as more specialised topics not treated in the main text, while three appendices present brief accounts of some areas of current research. This book can thus be used as textbook for an introductory course in algebraic geometry following a basic graduate course in algebra. Robin Hartshorne studied algebraic geometry with Oscar Zariski and David Mumford at Harvard, and with J.-P. Serre and A. Grothendieck in Paris. He is the author of "Residues and Duality", "Foundations of Projective Geometry", "Ample Subvarieties of Algebraic Varieties", and numerous research titles.
Introduction to Algebraic Geometry
Author: Steven Dale Cutkosky
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Publisher: American Mathematical Soc.
ISBN: 1470435187
Category : Mathematics
Languages : en
Pages : 498
Book Description
This book presents a readable and accessible introductory course in algebraic geometry, with most of the fundamental classical results presented with complete proofs. An emphasis is placed on developing connections between geometric and algebraic aspects of the theory. Differences between the theory in characteristic and positive characteristic are emphasized. The basic tools of classical and modern algebraic geometry are introduced, including varieties, schemes, singularities, sheaves, sheaf cohomology, and intersection theory. Basic classical results on curves and surfaces are proved. More advanced topics such as ramification theory, Zariski's main theorem, and Bertini's theorems for general linear systems are presented, with proofs, in the final chapters. With more than 200 exercises, the book is an excellent resource for teaching and learning introductory algebraic geometry.
Algebraic Surfaces
Author: Oscar Zariski
Publisher: Springer Science & Business Media
ISBN: 3642619916
Category : Mathematics
Languages : en
Pages : 285
Book Description
From the reviews: "The author's book [...] saw its first edition in 1935. [...] Now as before, the original text of the book is an excellent source for an interested reader to study the methods of classical algebraic geometry, and to find the great old results. [...] a timelessly beautiful pearl in the cultural heritage of mathematics as a whole." Zentralblatt MATH
Publisher: Springer Science & Business Media
ISBN: 3642619916
Category : Mathematics
Languages : en
Pages : 285
Book Description
From the reviews: "The author's book [...] saw its first edition in 1935. [...] Now as before, the original text of the book is an excellent source for an interested reader to study the methods of classical algebraic geometry, and to find the great old results. [...] a timelessly beautiful pearl in the cultural heritage of mathematics as a whole." Zentralblatt MATH
Current Developments in Algebraic Geometry
Author: Lucia Caporaso
Publisher: Cambridge University Press
ISBN: 052176825X
Category : Mathematics
Languages : en
Pages : 437
Book Description
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.
Publisher: Cambridge University Press
ISBN: 052176825X
Category : Mathematics
Languages : en
Pages : 437
Book Description
This volume, based on a workshop by the MSRI, offers an overview of the state of the art in many areas of algebraic geometry.
The Geometry of Schemes
Author: David Eisenbud
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265
Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Publisher: Springer Science & Business Media
ISBN: 0387226397
Category : Mathematics
Languages : en
Pages : 265
Book Description
Grothendieck’s beautiful theory of schemes permeates modern algebraic geometry and underlies its applications to number theory, physics, and applied mathematics. This simple account of that theory emphasizes and explains the universal geometric concepts behind the definitions. In the book, concepts are illustrated with fundamental examples, and explicit calculations show how the constructions of scheme theory are carried out in practice.
Synthetic Philosophy of Contemporary Mathematics
Author: Fernando Zalamea
Publisher: MIT Press
ISBN: 1913029328
Category : Philosophy
Languages : en
Pages : 394
Book Description
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.
Publisher: MIT Press
ISBN: 1913029328
Category : Philosophy
Languages : en
Pages : 394
Book Description
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.