X-ray Microanalysis for Biologists

X-ray Microanalysis for Biologists PDF Author: Alice Warley
Publisher: Ashgate Publishing
ISBN:
Category : Science
Languages : en
Pages : 308

Get Book Here

Book Description
The smart way to learn how to build InfoPath forms for SharePoint - one step at a time. Design and build forms without writing code, add approval workflows to your forms, integrate data, create and use forms in the cloud.

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis PDF Author: Joseph Goldstein
Publisher: Springer Science & Business Media
ISBN: 1461332737
Category : Science
Languages : en
Pages : 679

Get Book Here

Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.

X-ray Microanalysis in Electron Microscopy for Biologists

X-ray Microanalysis in Electron Microscopy for Biologists PDF Author: A. John Morgan
Publisher: Oxford University Press, USA
ISBN:
Category : Medical
Languages : en
Pages : 96

Get Book Here

Book Description
This compact guide provides a straightforward introduction to electron microprobe x-ray analysis, a nondestructive technique that greatly facilitates the study of the chemistry of cells. Assuming no prior knowledge of electron optics, Morgan explains the principle of x-ray production and detection, describes the various methods for converting measured x-ray intensities to element concentrations in thin specimens, and directs the reader to primary sources for more definitive practical guidelines. A painless introduction to a powerful laboratory technique, this book will be a useful aid for cell biologists, biological electron microscopists, and electrolyte physiologists.

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis PDF Author: Joseph Goldstein
Publisher: Springer
ISBN: 9781461332756
Category : Science
Languages : en
Pages : 673

Get Book Here

Book Description
This book has evolved by processes of selection and expansion from its predecessor, Practical Scanning Electron Microscopy (PSEM), published by Plenum Press in 1975. The interaction of the authors with students at the Short Course on Scanning Electron Microscopy and X-Ray Microanalysis held annually at Lehigh University has helped greatly in developing this textbook. The material has been chosen to provide a student with a general introduction to the techniques of scanning electron microscopy and x-ray microanalysis suitable for application in such fields as biology, geology, solid state physics, and materials science. Following the format of PSEM, this book gives the student a basic knowledge of (1) the user-controlled functions of the electron optics of the scanning electron microscope and electron microprobe, (2) the characteristics of electron-beam-sample inter actions, (3) image formation and interpretation, (4) x-ray spectrometry, and (5) quantitative x-ray microanalysis. Each of these topics has been updated and in most cases expanded over the material presented in PSEM in order to give the reader sufficient coverage to understand these topics and apply the information in the laboratory. Throughout the text, we have attempted to emphasize practical aspects of the techniques, describing those instru ment parameters which the microscopist can and must manipulate to obtain optimum information from the specimen. Certain areas in particular have been expanded in response to their increasing importance in the SEM field. Thus energy-dispersive x-ray spectrometry, which has undergone a tremendous surge in growth, is treated in substantial detail.

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis PDF Author: Joseph Goldstein
Publisher: Springer
ISBN: 9781461276531
Category : Science
Languages : en
Pages : 840

Get Book Here

Book Description
In the last decade, since the publication of the first edition of Scanning Electron Microscopy and X-ray Microanalysis, there has been a great expansion in the capabilities of the basic SEM and EPMA. High resolution imaging has been developed with the aid of an extensive range of field emission gun (FEG) microscopes. The magnification ranges of these instruments now overlap those of the transmission electron microscope. Low-voltage microscopy using the FEG now allows for the observation of noncoated samples. In addition, advances in the develop ment of x-ray wavelength and energy dispersive spectrometers allow for the measurement of low-energy x-rays, particularly from the light elements (B, C, N, 0). In the area of x-ray microanalysis, great advances have been made, particularly with the "phi rho z" [Ij)(pz)] technique for solid samples, and with other quantitation methods for thin films, particles, rough surfaces, and the light elements. In addition, x-ray imaging has advanced from the conventional technique of "dot mapping" to the method of quantitative compositional imaging. Beyond this, new software has allowed the development of much more meaningful displays for both imaging and quantitative analysis results and the capability for integrating the data to obtain specific information such as precipitate size, chemical analysis in designated areas or along specific directions, and local chemical inhomogeneities.

X-ray Microanalysis in Biology

X-ray Microanalysis in Biology PDF Author: David C. Sigee
Publisher: Cambridge University Press
ISBN: 9780521415309
Category : Medical
Languages : en
Pages : 356

Get Book Here

Book Description
This book describes an integrated approach to the use of X-ray microanalysis in biology.

X-ray Microanalysis for Biologists

X-ray Microanalysis for Biologists PDF Author: Alice Warley
Publisher: Ashgate Publishing
ISBN: 9781855780545
Category : Science
Languages : en
Pages : 312

Get Book Here

Book Description
The smart way to learn how to build InfoPath forms for SharePoint - one step at a time. Design and build forms without writing code, add approval workflows to your forms, integrate data, create and use forms in the cloud.

Practical Methods in Electron Microscopy

Practical Methods in Electron Microscopy PDF Author: Audrey M. Glauert
Publisher:
ISBN: 9780720442502
Category :
Languages : en
Pages : 276

Get Book Here

Book Description


Electron Probe Microanalysis

Electron Probe Microanalysis PDF Author: Karl Zierold
Publisher: Springer Science & Business Media
ISBN: 364274477X
Category : Science
Languages : en
Pages : 331

Get Book Here

Book Description
The aim of electron probe microanalysis of biological systems is to identify, localize, and quantify elements, mass, and water in cells and tissues. The method is based on the idea that all electrons and photons emerging from an electron beam irradiated specimen contain information on its structure and composition. In particular, energy spectroscopy of X-rays and electrons after interaction of the electron beam with the specimen is used for this purpose. However, the application of this method in biology and medicine has to overcome three specific problems: 1. The principle constituent of most cell samples is water. Since liquid water is not compatible with vacuum conditions in the electron microscope, specimens have to be prepared without disturbing the other components, in parti cular diffusible ions (elements). 2. Electron probe microanaly sis provides physical data on either dry specimens or fully hydrated, frozen specimens. This data usually has to be con verted into quantitative data meaningful to the cell biologist or physiologist. 3. Cells and tissues are not static but dynamic systems. Thus, for example, microanalysis of physiolo gical processes requires sampling techniques which are adapted to address specific biological or medical questions. During recent years, remarkable progress has been made to overcome these problems. Cryopreparation, image analysis, and electron energy loss spectroscopy are key areas which have solved some problems and offer promise for future improvements.

Scanning Electron Microscopy and X-Ray Microanalysis

Scanning Electron Microscopy and X-Ray Microanalysis PDF Author: Joseph I. Goldstein
Publisher: Springer
ISBN: 1493966766
Category : Technology & Engineering
Languages : en
Pages : 554

Get Book Here

Book Description
This thoroughly revised and updated Fourth Edition of a time-honored text provides the reader with a comprehensive introduction to the field of scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) for elemental microanalysis, electron backscatter diffraction analysis (EBSD) for micro-crystallography, and focused ion beams. Students and academic researchers will find the text to be an authoritative and scholarly resource, while SEM operators and a diversity of practitioners — engineers, technicians, physical and biological scientists, clinicians, and technical managers — will find that every chapter has been overhauled to meet the more practical needs of the technologist and working professional. In a break with the past, this Fourth Edition de-emphasizes the design and physical operating basis of the instrumentation, including the electron sources, lenses, detectors, etc. In the modern SEM, many of the low level instrument parameters are now controlled and optimized by the microscope’s software, and user access is restricted. Although the software control system provides efficient and reproducible microscopy and microanalysis, the user must understand the parameter space wherein choices are made to achieve effective and meaningful microscopy, microanalysis, and micro-crystallography. Therefore, special emphasis is placed on beam energy, beam current, electron detector characteristics and controls, and ancillary techniques such as energy dispersive x-ray spectrometry (EDS) and electron backscatter diffraction (EBSD). With 13 years between the publication of the third and fourth editions, new coverage reflects the many improvements in the instrument and analysis techniques. The SEM has evolved into a powerful and versatile characterization platform in which morphology, elemental composition, and crystal structure can be evaluated simultaneously. Extension of the SEM into a "dual beam" platform incorporating both electron and ion columns allows precision modification of the specimen by focused ion beam milling. New coverage in the Fourth Edition includes the increasing use of field emission guns and SEM instruments with high resolution capabilities, variable pressure SEM operation, theory, and measurement of x-rays with high throughput silicon drift detector (SDD-EDS) x-ray spectrometers. In addition to powerful vendor- supplied software to support data collection and processing, the microscopist can access advanced capabilities available in free, open source software platforms, including the National Institutes of Health (NIH) ImageJ-Fiji for image processing and the National Institute of Standards and Technology (NIST) DTSA II for quantitative EDS x-ray microanalysis and spectral simulation, both of which are extensively used in this work. However, the user has a responsibility to bring intellect, curiosity, and a proper skepticism to information on a computer screen and to the entire measurement process. This book helps you to achieve this goal. Realigns the text with the needs of a diverse audience from researchers and graduate students to SEM operators and technical managers Emphasizes practical, hands-on operation of the microscope, particularly user selection of the critical operating parameters to achieve meaningful results Provides step-by-step overviews of SEM, EDS, and EBSD and checklists of critical issues for SEM imaging, EDS x-ray microanalysis, and EBSD crystallographic measurements Makes extensive use of open source software: NIH ImageJ-FIJI for image processing and NIST DTSA II for quantitative EDS x-ray microanalysis and EDS spectral simulation. Includes case studies to illustrate practical problem solving Covers Helium ion scanning microscopy Organized into relatively self-contained modules – no need to "read it all" to understand a topic Includes an online supplement—an extensive "Database of Electron–Solid Interactions"—which can be accessed on SpringerLink, in Chapter 3