Author: Vicky Neale
Publisher: London Publishing Partnership
ISBN: 1913019128
Category : Mathematics
Languages : en
Pages : 210
Book Description
Considering studying mathematics at university? Wondering whether a mathematics degree will get you a good job, and what you might earn? Want to know what it's actually like to study mathematics at degree level? This book tells you what you need to know. Studying any subject at degree level is an investment in the future that involves significant cost. Now more than ever, students and their parents need to weigh up the potential benefits of university courses. That's where the Why Study series comes in. This series of books, aimed at students, parents and teachers, explains in practical terms the range and scope of an academic subject at university level and where it can lead in terms of careers or further study. Each book sets out to enthuse the reader about its subject and answer the crucial questions that a college prospectus does not.
Why Study Mathematics?
Author: Vicky Neale
Publisher: London Publishing Partnership
ISBN: 1913019128
Category : Mathematics
Languages : en
Pages : 210
Book Description
Considering studying mathematics at university? Wondering whether a mathematics degree will get you a good job, and what you might earn? Want to know what it's actually like to study mathematics at degree level? This book tells you what you need to know. Studying any subject at degree level is an investment in the future that involves significant cost. Now more than ever, students and their parents need to weigh up the potential benefits of university courses. That's where the Why Study series comes in. This series of books, aimed at students, parents and teachers, explains in practical terms the range and scope of an academic subject at university level and where it can lead in terms of careers or further study. Each book sets out to enthuse the reader about its subject and answer the crucial questions that a college prospectus does not.
Publisher: London Publishing Partnership
ISBN: 1913019128
Category : Mathematics
Languages : en
Pages : 210
Book Description
Considering studying mathematics at university? Wondering whether a mathematics degree will get you a good job, and what you might earn? Want to know what it's actually like to study mathematics at degree level? This book tells you what you need to know. Studying any subject at degree level is an investment in the future that involves significant cost. Now more than ever, students and their parents need to weigh up the potential benefits of university courses. That's where the Why Study series comes in. This series of books, aimed at students, parents and teachers, explains in practical terms the range and scope of an academic subject at university level and where it can lead in terms of careers or further study. Each book sets out to enthuse the reader about its subject and answer the crucial questions that a college prospectus does not.
The Math Myth
Author: Andrew Hacker
Publisher: New Press, The
ISBN: 1620970694
Category : Education
Languages : en
Pages : 257
Book Description
A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review
Publisher: New Press, The
ISBN: 1620970694
Category : Education
Languages : en
Pages : 257
Book Description
A New York Times–bestselling author looks at mathematics education in America—when it’s worthwhile, and when it’s not. Why do we inflict a full menu of mathematics—algebra, geometry, trigonometry, even calculus—on all young Americans, regardless of their interests or aptitudes? While Andrew Hacker has been a professor of mathematics himself, and extols the glories of the subject, he also questions some widely held assumptions in this thought-provoking and practical-minded book. Does advanced math really broaden our minds? Is mastery of azimuths and asymptotes needed for success in most jobs? Should the entire Common Core syllabus be required of every student? Hacker worries that our nation’s current frenzied emphasis on STEM is diverting attention from other pursuits and even subverting the spirit of the country. Here, he shows how mandating math for everyone prevents other talents from being developed and acts as an irrational barrier to graduation and careers. He proposes alternatives, including teaching facility with figures, quantitative reasoning, and understanding statistics. Expanding upon the author’s viral New York Times op-ed, The Math Myth is sure to spark a heated and needed national conversation—not just about mathematics but about the kind of people and society we want to be. “Hacker’s accessible arguments offer plenty to think about and should serve as a clarion call to students, parents, and educators who decry the one-size-fits-all approach to schooling.” —Publishers Weekly, starred review
The Art of Problem Solving, Volume 1
Author: Sandor Lehoczky
Publisher: Mitchell Beazley
ISBN: 9780977304561
Category : Mathematics
Languages : en
Pages : 0
Book Description
" ... offer[s] a challenging exploration of problem solving mathematics and preparation for programs such as MATHCOUNTS and the American Mathematics Competition."--Back cover
Publisher: Mitchell Beazley
ISBN: 9780977304561
Category : Mathematics
Languages : en
Pages : 0
Book Description
" ... offer[s] a challenging exploration of problem solving mathematics and preparation for programs such as MATHCOUNTS and the American Mathematics Competition."--Back cover
Academic Success
Author: Cristy Bartlett
Publisher:
ISBN:
Category : Academic achievement
Languages : en
Pages :
Book Description
Publisher:
ISBN:
Category : Academic achievement
Languages : en
Pages :
Book Description
Visible Learning for Mathematics, Grades K-12
Author: John Hattie
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Publisher: Corwin Press
ISBN: 1506362958
Category : Education
Languages : en
Pages : 209
Book Description
Selected as the Michigan Council of Teachers of Mathematics winter book club book! Rich tasks, collaborative work, number talks, problem-based learning, direct instruction...with so many possible approaches, how do we know which ones work the best? In Visible Learning for Mathematics, six acclaimed educators assert it’s not about which one—it’s about when—and show you how to design high-impact instruction so all students demonstrate more than a year’s worth of mathematics learning for a year spent in school. That’s a high bar, but with the amazing K-12 framework here, you choose the right approach at the right time, depending upon where learners are within three phases of learning: surface, deep, and transfer. This results in "visible" learning because the effect is tangible. The framework is forged out of current research in mathematics combined with John Hattie’s synthesis of more than 15 years of education research involving 300 million students. Chapter by chapter, and equipped with video clips, planning tools, rubrics, and templates, you get the inside track on which instructional strategies to use at each phase of the learning cycle: Surface learning phase: When—through carefully constructed experiences—students explore new concepts and make connections to procedural skills and vocabulary that give shape to developing conceptual understandings. Deep learning phase: When—through the solving of rich high-cognitive tasks and rigorous discussion—students make connections among conceptual ideas, form mathematical generalizations, and apply and practice procedural skills with fluency. Transfer phase: When students can independently think through more complex mathematics, and can plan, investigate, and elaborate as they apply what they know to new mathematical situations. To equip students for higher-level mathematics learning, we have to be clear about where students are, where they need to go, and what it looks like when they get there. Visible Learning for Math brings about powerful, precision teaching for K-12 through intentionally designed guided, collaborative, and independent learning.
Mathematics for Human Flourishing
Author: Francis Su
Publisher: Yale University Press
ISBN: 0300248814
Category : Mathematics
Languages : en
Pages : 287
Book Description
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
Publisher: Yale University Press
ISBN: 0300248814
Category : Mathematics
Languages : en
Pages : 287
Book Description
Winner of the Mathematics Association of America's 2021 Euler Book Prize, this is an inclusive vision of mathematics—its beauty, its humanity, and its power to build virtues that help us all flourish“This is perhaps the most important mathematics book of our time. Francis Su shows mathematics is an experience of the mind and, most important, of the heart.”—James Tanton, Global Math Project"A good book is an entertaining read. A great book holds up a mirror that allows us to more clearly see ourselves and the world we live in. Francis Su’s Mathematics for Human Flourishing is both a good book and a great book."—MAA Reviews For mathematician Francis Su, a society without mathematical affection is like a city without concerts, parks, or museums. To miss out on mathematics is to live without experiencing some of humanity’s most beautiful ideas.In this profound book, written for a wide audience but especially for those disenchanted by their past experiences, an award‑winning mathematician and educator weaves parables, puzzles, and personal reflections to show how mathematics meets basic human desires—such as for play, beauty, freedom, justice, and love—and cultivates virtues essential for human flourishing. These desires and virtues, and the stories told here, reveal how mathematics is intimately tied to being human. Some lessons emerge from those who have struggled, including philosopher Simone Weil, whose own mathematical contributions were overshadowed by her brother’s, and Christopher Jackson, who discovered mathematics as an inmate in a federal prison. Christopher’s letters to the author appear throughout the book and show how this intellectual pursuit can—and must—be open to all.
On the Study and Difficulties of Mathematics
Author: Augustus De Morgan
Publisher: Courier Corporation
ISBN: 0486155153
Category : Mathematics
Languages : en
Pages : 308
Book Description
One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks. Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the concept of arithmetical notion and its elementary rules, including arithmetical reactions and decimal fractions. Moving on to algebra, he reviews the elementary principles, examines equations of the first and second degree, and surveys roots and logarithms. De Morgan's book concludes with an exploration of geometrical reasoning that encompasses the formulation and use of axioms, the role of proportion, and the application of algebra to the measurement of lines, angles, the proportion of figures, and surfaces.
Publisher: Courier Corporation
ISBN: 0486155153
Category : Mathematics
Languages : en
Pages : 308
Book Description
One of the twentieth century's most eminent mathematical writers, Augustus De Morgan enriched his expositions with insights from history and psychology. On the Study and Difficulties of Mathematics represents some of his best work, containing points usually overlooked by elementary treatises, and written in a fresh and natural tone that provides a refreshing contrast to the mechanical character of common textbooks. Presuming only a knowledge of the rules of algebra and Euclidean theorems, De Morgan begins with some introductory remarks on the nature and objects of mathematics. He discusses the concept of arithmetical notion and its elementary rules, including arithmetical reactions and decimal fractions. Moving on to algebra, he reviews the elementary principles, examines equations of the first and second degree, and surveys roots and logarithms. De Morgan's book concludes with an exploration of geometrical reasoning that encompasses the formulation and use of axioms, the role of proportion, and the application of algebra to the measurement of lines, angles, the proportion of figures, and surfaces.
Building Thinking Classrooms in Mathematics, Grades K-12
Author: Peter Liljedahl
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454
Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Publisher: Corwin Press
ISBN: 1544374844
Category : Education
Languages : en
Pages : 454
Book Description
A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.
Transformational Change Efforts: Student Engagement in Mathematics through an Institutional Network for Active Learning
Author: Wendy M. Smith
Publisher: American Mathematical Soc.
ISBN: 1470463776
Category : Education
Languages : en
Pages : 348
Book Description
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?
Publisher: American Mathematical Soc.
ISBN: 1470463776
Category : Education
Languages : en
Pages : 348
Book Description
The purpose of this handbook is to help launch institutional transformations in mathematics departments to improve student success. We report findings from the Student Engagement in Mathematics through an Institutional Network for Active Learning (SEMINAL) study. SEMINAL's purpose is to help change agents, those looking to (or currently attempting to) enact change within mathematics departments and beyond—trying to reform the instruction of their lower division mathematics courses in order to promote high achievement for all students. SEMINAL specifically studies the change mechanisms that allow postsecondary institutions to incorporate and sustain active learning in Precalculus to Calculus 2 learning environments. Out of the approximately 2.5 million students enrolled in collegiate mathematics courses each year, over 90% are enrolled in Precalculus to Calculus 2 courses. Forty-four percent of mathematics departments think active learning mathematics strategies are important for Precalculus to Calculus 2 courses, but only 15 percnt state that they are very successful at implementing them. Therefore, insights into the following research question will help with institutional transformations: What conditions, strategies, interventions and actions at the departmental and classroom levels contribute to the initiation, implementation, and institutional sustainability of active learning in the undergraduate calculus sequence (Precalculus to Calculus 2) across varied institutions?
Integrating Research on Teaching and Learning Mathematics
Author: Elizabeth Fennema
Publisher: SUNY Press
ISBN: 9780791405222
Category : Mathematics
Languages : en
Pages : 242
Book Description
During the last decade there were significant advances in the study of students' learning and problem solving in mathematics, and in the study of classroom instruction. Because these two research programs usually have been conducted individually, it is generally agreed now that there is an increasing need for an integrated research program. This book represents initial discussions and development of a unified paradigm for studying teaching in mathematics that builds upon both cognitive as well as instructional research.
Publisher: SUNY Press
ISBN: 9780791405222
Category : Mathematics
Languages : en
Pages : 242
Book Description
During the last decade there were significant advances in the study of students' learning and problem solving in mathematics, and in the study of classroom instruction. Because these two research programs usually have been conducted individually, it is generally agreed now that there is an increasing need for an integrated research program. This book represents initial discussions and development of a unified paradigm for studying teaching in mathematics that builds upon both cognitive as well as instructional research.