Weighted Cohomology of Arithmetic Groups

Weighted Cohomology of Arithmetic Groups PDF Author: Arvind N. Nair
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Get Book Here

Book Description

Weighted Cohomology of Arithmetic Groups

Weighted Cohomology of Arithmetic Groups PDF Author: Arvind N. Nair
Publisher:
ISBN:
Category :
Languages : en
Pages : 164

Get Book Here

Book Description


Cohomology of Arithmetic Groups and Automorphic Forms

Cohomology of Arithmetic Groups and Automorphic Forms PDF Author: Jean-Pierre Labesse
Publisher: Springer
ISBN: 3540468765
Category : Mathematics
Languages : en
Pages : 358

Get Book Here

Book Description
Cohomology of arithmetic groups serves as a tool in studying possible relations between the theory of automorphic forms and the arithmetic of algebraic varieties resp. the geometry of locally symmetric spaces. These proceedings will serve as a guide to this still rapidly developing area of mathematics. Besides two survey articles, the contributions are original research papers.

Arithmetic Groups and Their Generalizations

Arithmetic Groups and Their Generalizations PDF Author: Lizhen Ji
Publisher: American Mathematical Soc.
ISBN: 0821848666
Category : Mathematics
Languages : en
Pages : 282

Get Book Here

Book Description
In one guise or another, many mathematicians are familiar with certain arithmetic groups, such as $\mathbf{Z}$ or $\textrm{SL}(n, \mathbf{Z})$. Yet, many applications of arithmetic groups and many connections to other subjects within mathematics are less well known. Indeed, arithmetic groups admit many natural and important generalizations. The purpose of this expository book is to explain, through some brief and informal comments and extensive references, what arithmetic groups and their generalizations are, why they are important to study, and how they can be understood and applied to many fields, such as analysis, geometry, topology, number theory, representation theory, and algebraic geometry. It is hoped that such an overview will shed a light on the important role played by arithmetic groups in modern mathematics. Titles in this series are co-published with International Press, Cambridge, MA.Table of Contents: Introduction; General comments on references; Examples of basic arithmetic groups; General arithmetic subgroups and locally symmetric spaces; Discrete subgroups of Lie groups and arithmeticity of lattices in Lie groups; Different completions of $\mathbb{Q}$ and $S$-arithmetic groups over number fields; Global fields and $S$-arithmetic groups over function fields; Finiteness properties of arithmetic and $S$-arithmetic groups; Symmetric spaces, Bruhat-Tits buildings and their arithmetic quotients; Compactifications of locally symmetric spaces; Rigidity of locally symmetric spaces; Automorphic forms and automorphic representations for general arithmetic groups; Cohomology of arithmetic groups; $K$-groups of rings of integers and $K$-groups of group rings; Locally homogeneous manifolds and period domains; Non-cofinite discrete groups, geometrically finite groups; Large scale geometry of discrete groups; Tree lattices; Hyperbolic groups; Mapping class groups and outer automorphism groups of free groups; Outer automorphism group of free groups and the outer spaces; References; Index. Review from Mathematical Reviews: ...the author deserves credit for having done the tremendous job of encompassing every aspect of arithmetic groups visible in today's mathematics in a systematic manner; the book should be an important guide for some time to come.(AMSIP/43.

Cohomology of Arithmetic Groups

Cohomology of Arithmetic Groups PDF Author: James W. Cogdell
Publisher: Springer
ISBN: 3319955497
Category : Mathematics
Languages : en
Pages : 310

Get Book Here

Book Description
This book discusses the mathematical interests of Joachim Schwermer, who throughout his career has focused on the cohomology of arithmetic groups, automorphic forms and the geometry of arithmetic manifolds. To mark his 66th birthday, the editors brought together mathematical experts to offer an overview of the current state of research in these and related areas. The result is this book, with contributions ranging from topology to arithmetic. It probes the relation between cohomology of arithmetic groups and automorphic forms and their L-functions, and spans the range from classical Bianchi groups to the theory of Shimura varieties. It is a valuable reference for both experts in the fields and for graduate students and postdocs wanting to discover where the current frontiers lie.

 PDF Author:
Publisher: World Scientific
ISBN:
Category :
Languages : en
Pages : 1191

Get Book Here

Book Description


Harmonic Analysis, the Trace Formula, and Shimura Varieties

Harmonic Analysis, the Trace Formula, and Shimura Varieties PDF Author: Clay Mathematics Institute. Summer School
Publisher: American Mathematical Soc.
ISBN: 9780821838440
Category : Mathematics
Languages : en
Pages : 708

Get Book Here

Book Description
Langlands program proposes fundamental relations that tie arithmetic information from number theory and algebraic geometry with analytic information from harmonic analysis and group representations. This title intends to provide an entry point into this exciting and challenging field.

Proceedings of the International Conference on Cohomology of Arithmetic Groups, L-Functions, and Automorphic Forms

Proceedings of the International Conference on Cohomology of Arithmetic Groups, L-Functions, and Automorphic Forms PDF Author: T. N. Venkataramana
Publisher: Alpha Science International, Limited
ISBN:
Category : Mathematics
Languages : en
Pages : 270

Get Book Here

Book Description
This collection of papers is based on lectures delivered at the Tata Institute of Fundamental Research (TIFR) as part of a special year on arithmetic groups, $L$-functions and automorphic forms. The volume opens with an article by Cogdell and Piatetski-Shapiro on Converse Theorems for $GL_n$ and applications to liftings. It ends with some remarks on the Riemann Hypothesis by Ram Murty. Other talks cover topics such as Hecke theory for Jacobi forms, restriction maps and $L$-values, congruences for Hilbert modular forms, Whittaker models for $p$-adic $GL(4)$, the Seigel formula, newforms for the Maass Spezialchar, an algebraic Chebotarev density theorem, a converse theorem for Dirichlet series with poles, Kirillov theory for $GL_2(\mathcal{D})$, and the $L^2$ Euler characteristic of arithmetic quotients. The present volume is the latest in the Tata Institute's tradition of recognized contributions to number theory.

The Arithmetic of Fundamental Groups

The Arithmetic of Fundamental Groups PDF Author: Jakob Stix
Publisher: Springer Science & Business Media
ISBN: 3642239056
Category : Mathematics
Languages : en
Pages : 387

Get Book Here

Book Description
In the more than 100 years since the fundamental group was first introduced by Henri Poincaré it has evolved to play an important role in different areas of mathematics. Originally conceived as part of algebraic topology, this essential concept and its analogies have found numerous applications in mathematics that are still being investigated today, and which are explored in this volume, the result of a meeting at Heidelberg University that brought together mathematicians who use or study fundamental groups in their work with an eye towards applications in arithmetic. The book acknowledges the varied incarnations of the fundamental group: pro-finite, l-adic, p-adic, pro-algebraic and motivic. It explores a wealth of topics that range from anabelian geometry (in particular the section conjecture), the l-adic polylogarithm, gonality questions of modular curves, vector bundles in connection with monodromy, and relative pro-algebraic completions, to a motivic version of Minhyong Kim's non-abelian Chabauty method and p-adic integration after Coleman. The editor has also included the abstracts of all the talks given at the Heidelberg meeting, as well as the notes on Coleman integration and on Grothendieck's fundamental group with a view towards anabelian geometry taken from a series of introductory lectures given by Amnon Besser and Tamás Szamuely, respectively.

Topology of Stratified Spaces

Topology of Stratified Spaces PDF Author: Greg Friedman
Publisher: Cambridge University Press
ISBN: 052119167X
Category : Mathematics
Languages : en
Pages : 491

Get Book Here

Book Description
This book explores the study of singular spaces using techniques from areas within geometry and topology and the interactions among them.

Challenges for the 21st Century

Challenges for the 21st Century PDF Author: Louis H. Y. Chen
Publisher: World Scientific
ISBN: 9789812811264
Category : Mathematics
Languages : en
Pages : 532

Get Book Here

Book Description
The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.