Author: Sergey Nikolaevich Gurbatov
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Waves and Structures in Nonlinear Nondispersive Media
Author: Sergey Nikolaevich Gurbatov
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Publisher: Springer Science & Business Media
ISBN: 3642236170
Category : Science
Languages : en
Pages : 477
Book Description
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is the Full member of Russian Academy of Sciences, the head of Department at Moscow University and Professor at BTH (Sweden). Dr. Saichev A.I. is the Professor at the Faculty of Radiophysics of Nizhny Novgorod State University, Professor of ETH Zürich.
Waves and Structures in Nonlinear Nondispersive Media
Author: Sergei Nikolaevich Gurbatov
Publisher:
ISBN: 9787040316957
Category : Electronic books
Languages : en
Pages : 472
Book Description
Publisher:
ISBN: 9787040316957
Category : Electronic books
Languages : en
Pages : 472
Book Description
Nonlinear Wave Processes in Acoustics
Author: K. Naugolnykh
Publisher: Cambridge University Press
ISBN: 9780521399845
Category : Mathematics
Languages : en
Pages : 316
Book Description
This text considers models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. It also considers the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams.
Publisher: Cambridge University Press
ISBN: 9780521399845
Category : Mathematics
Languages : en
Pages : 316
Book Description
This text considers models of different "acoustic" media as well as equations and behavior of finite-amplitude waves. It also considers the effects of nonlinearity, dissipation, dispersion, and for two- and three-dimensional problems, reflection and diffraction on the evolution and interaction of acoustic beams.
Conical Waves, Filaments and Nonlinear Filamentation Optics
Author: Arnaud Couairon
Publisher:
ISBN: 9788854812086
Category : Science
Languages : en
Pages : 149
Book Description
Publisher:
ISBN: 9788854812086
Category : Science
Languages : en
Pages : 149
Book Description
Nonlinear Oscillations and Waves in Dynamical Systems
Author: P.S Landa
Publisher: Springer Science & Business Media
ISBN: 9401587639
Category : Mathematics
Languages : en
Pages : 550
Book Description
A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.
Publisher: Springer Science & Business Media
ISBN: 9401587639
Category : Mathematics
Languages : en
Pages : 550
Book Description
A rich variety of books devoted to dynamical chaos, solitons, self-organization has appeared in recent years. These problems were all considered independently of one another. Therefore many of readers of these books do not suspect that the problems discussed are divisions of a great generalizing science - the theory of oscillations and waves. This science is not some branch of physics or mechanics, it is a science in its own right. It is in some sense a meta-science. In this respect the theory of oscillations and waves is closest to mathematics. In this book we call the reader's attention to the present-day theory of non-linear oscillations and waves. Oscillatory and wave processes in the systems of diversified physical natures, both periodic and chaotic, are considered from a unified poin t of view . The relation between the theory of oscillations and waves, non-linear dynamics and synergetics is discussed. One of the purposes of this book is to convince reader of the necessity of a thorough study popular branches of of the theory of oscillat ions and waves, and to show that such science as non-linear dynamics, synergetics, soliton theory, and so on, are, in fact , constituent parts of this theory. The primary audiences for this book are researchers having to do with oscillatory and wave processes, and both students and post-graduate students interested in a deep study of the general laws and applications of the theory of oscillations and waves.
Nonlinear Ultrasonic Guided Waves
Author: Cliff J. Lissenden
Publisher:
ISBN: 9780750349093
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9780750349093
Category : Technology & Engineering
Languages : en
Pages : 0
Book Description
Quantum Mechanics and Nonlinear Waves
Author: Philip Barnes Burt
Publisher: CRC Press
ISBN: 9783718600724
Category : Science
Languages : en
Pages : 352
Book Description
Publisher: CRC Press
ISBN: 9783718600724
Category : Science
Languages : en
Pages : 352
Book Description
Nonlinear Random Waves and Turbulence in Nondispersive Media
Author: С. Н Гурбатов
Publisher: Manchester University Press
ISBN: 9780719032752
Category : Science
Languages : ru
Pages : 334
Book Description
Publisher: Manchester University Press
ISBN: 9780719032752
Category : Science
Languages : ru
Pages : 334
Book Description
Hydraulic performance of an impermeable submerged structure for tsunami damping
Author: Agnieszka Strusinska
Publisher: ibidem-Verlag / ibidem Press
ISBN: 3838262123
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
In the face of the enormous destruction caused by the December 26, 2004 Indian Ocean tsunami event, it is necessary to utilize more effective means of tsunami mitigation to prevent such tragedies. Based on the experiences gathered in storm wave damping by using submerged structures, Agnieszka Strusinska examines the applicability of artificial reefs as an integrated part of a multi-defence line strategy for tsunami attenuation. In her study, she first discusses the results of laboratory experiments in order to identify the difference in the nonlinear interaction of storm and tsunami-like solitary waves with an impermeable sub¬mer¬ged structure of a finite width (including generation of wave breaking and wave fission). With this basic knowledge, the damping performance of an artificial reef under tsunami impact is determined as a ratio of wave transmission, wave reflection, and wave energy dissipation for varying reef geometries and incident wave conditions using a Boussinesq-type numerical model.
Publisher: ibidem-Verlag / ibidem Press
ISBN: 3838262123
Category : Technology & Engineering
Languages : en
Pages : 228
Book Description
In the face of the enormous destruction caused by the December 26, 2004 Indian Ocean tsunami event, it is necessary to utilize more effective means of tsunami mitigation to prevent such tragedies. Based on the experiences gathered in storm wave damping by using submerged structures, Agnieszka Strusinska examines the applicability of artificial reefs as an integrated part of a multi-defence line strategy for tsunami attenuation. In her study, she first discusses the results of laboratory experiments in order to identify the difference in the nonlinear interaction of storm and tsunami-like solitary waves with an impermeable sub¬mer¬ged structure of a finite width (including generation of wave breaking and wave fission). With this basic knowledge, the damping performance of an artificial reef under tsunami impact is determined as a ratio of wave transmission, wave reflection, and wave energy dissipation for varying reef geometries and incident wave conditions using a Boussinesq-type numerical model.
Self-focusing: Past and Present
Author: Robert W. Boyd
Publisher: Springer Science & Business Media
ISBN: 0387347275
Category : Science
Languages : en
Pages : 611
Book Description
Self-focusing has been an area of active scientific investigation for nearly 50 years. This book presents a comprehensive treatment of this topic and reviews both theoretical and experimental investigations of self-focusing. This book should be of interest to scientists and engineers working with lasers and their applications. From a practical point of view, self-focusing effects impose a limit on the power that can be transmitted through a material medium. Self-focusing also can reduce the threshold for the occurrence of other nonlinear optical processes. Self-focusing often leads to damage in optical materials and is a limiting factor in the design of high-power laser systems. But it can be harnessed for the design of useful devices such as optical power limiters and switches. At a formal level, the equations for self-focusing are equivalent to those describing Bose-Einstein condensates and certain aspects of plasma physics and hydrodynamics. There is thus a unifying theme between nonlinear optics and these other disciplines. One of the goals of this book is to connect the extensive early literature on self-focusing, filament-ation, self-trapping, and collapse with more recent studies aimed at issues such as self-focusing of fs pulses, white light generation, and the generation of filaments in air with lengths of more than 10 km. It also describes some modern advances in self-focusing theory including the influence of beam nonparaxiality on self-focusing collapse. This book consists of 24 chapters. Among them are three reprinted key landmark articles published earlier. It also contains the first publication of the 1964 paper that describes the first laboratory observation of self-focusing phenomena with photographic evidence.
Publisher: Springer Science & Business Media
ISBN: 0387347275
Category : Science
Languages : en
Pages : 611
Book Description
Self-focusing has been an area of active scientific investigation for nearly 50 years. This book presents a comprehensive treatment of this topic and reviews both theoretical and experimental investigations of self-focusing. This book should be of interest to scientists and engineers working with lasers and their applications. From a practical point of view, self-focusing effects impose a limit on the power that can be transmitted through a material medium. Self-focusing also can reduce the threshold for the occurrence of other nonlinear optical processes. Self-focusing often leads to damage in optical materials and is a limiting factor in the design of high-power laser systems. But it can be harnessed for the design of useful devices such as optical power limiters and switches. At a formal level, the equations for self-focusing are equivalent to those describing Bose-Einstein condensates and certain aspects of plasma physics and hydrodynamics. There is thus a unifying theme between nonlinear optics and these other disciplines. One of the goals of this book is to connect the extensive early literature on self-focusing, filament-ation, self-trapping, and collapse with more recent studies aimed at issues such as self-focusing of fs pulses, white light generation, and the generation of filaments in air with lengths of more than 10 km. It also describes some modern advances in self-focusing theory including the influence of beam nonparaxiality on self-focusing collapse. This book consists of 24 chapters. Among them are three reprinted key landmark articles published earlier. It also contains the first publication of the 1964 paper that describes the first laboratory observation of self-focusing phenomena with photographic evidence.