Wavelet Numerical Method and Its Applications in Nonlinear Problems

Wavelet Numerical Method and Its Applications in Nonlinear Problems PDF Author: You-He Zhou
Publisher: Springer Nature
ISBN: 9813366435
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
This book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.

Wavelet Numerical Method and Its Applications in Nonlinear Problems

Wavelet Numerical Method and Its Applications in Nonlinear Problems PDF Author: You-He Zhou
Publisher: Springer Nature
ISBN: 9813366435
Category : Technology & Engineering
Languages : en
Pages : 478

Get Book Here

Book Description
This book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author’s own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering.

Wavelet Numerical Method and Its Applications in Nonlinear Problems

Wavelet Numerical Method and Its Applications in Nonlinear Problems PDF Author: You-He Zhou
Publisher:
ISBN: 9789813366442
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
This book summarizes the basic theory of wavelets and some related algorithms in an easy-to-understand language from the perspective of an engineer rather than a mathematician. In this book, the wavelet solution schemes are systematically established and introduced for solving general linear and nonlinear initial boundary value problems in engineering, including the technique of boundary extension in approximating interval-bounded functions, the calculation method for various connection coefficients, the single-point Gaussian integration method in calculating the coefficients of wavelet expansions and unique treatments on nonlinear terms in differential equations. At the same time, this book is supplemented by a large number of numerical examples to specifically explain procedures and characteristics of the method, as well as detailed treatments for specific problems. Different from most of the current monographs focusing on the basic theory of wavelets, it focuses on the use of wavelet-based numerical methods developed by the author over the years. Even for the necessary basic theory of wavelet in engineering applications, this book is based on the author's own understanding in plain language, instead of a relatively difficult professional mathematical description. This book is very suitable for students, researchers and technical personnel who only want to need the minimal knowledge of wavelet method to solve specific problems in engineering. .

Numerical Analysis of Wavelet Methods

Numerical Analysis of Wavelet Methods PDF Author: A. Cohen
Publisher: Elsevier
ISBN: 0080537855
Category : Mathematics
Languages : en
Pages : 357

Get Book Here

Book Description
Since their introduction in the 1980's, wavelets have become a powerful tool in mathematical analysis, with applications such as image compression, statistical estimation and numerical simulation of partial differential equations. One of their main attractive features is the ability to accurately represent fairly general functions with a small number of adaptively chosen wavelet coefficients, as well as to characterize the smoothness of such functions from the numerical behaviour of these coefficients. The theoretical pillar that underlies such properties involves approximation theory and function spaces, and plays a pivotal role in the analysis of wavelet-based numerical methods. This book offers a self-contained treatment of wavelets, which includes this theoretical pillar and it applications to the numerical treatment of partial differential equations. Its key features are:1. Self-contained introduction to wavelet bases and related numerical algorithms, from the simplest examples to the most numerically useful general constructions.2. Full treatment of the theoretical foundations that are crucial for the analysisof wavelets and other related multiscale methods : function spaces, linear and nonlinear approximation, interpolation theory.3. Applications of these concepts to the numerical treatment of partial differential equations : multilevel preconditioning, sparse approximations of differential and integral operators, adaptive discretization strategies.

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations

Wavelet Methods for Solving Partial Differential Equations and Fractional Differential Equations PDF Author: Santanu Saha Ray
Publisher: CRC Press
ISBN: 1351682210
Category : Mathematics
Languages : en
Pages : 251

Get Book Here

Book Description
The main focus of the book is to implement wavelet based transform methods for solving problems of fractional order partial differential equations arising in modelling real physical phenomena. It explores analytical and numerical approximate solution obtained by wavelet methods for both classical and fractional order partial differential equations.

Haar Wavelets

Haar Wavelets PDF Author: Ülo Lepik
Publisher: Springer Science & Business Media
ISBN: 3319042955
Category : Technology & Engineering
Languages : en
Pages : 209

Get Book Here

Book Description
This is the first book to present a systematic review of applications of the Haar wavelet method for solving Calculus and Structural Mechanics problems. Haar wavelet-based solutions for a wide range of problems, such as various differential and integral equations, fractional equations, optimal control theory, buckling, bending and vibrations of elastic beams are considered. Numerical examples demonstrating the efficiency and accuracy of the Haar method are provided for all solutions.

Applied Functional Analysis

Applied Functional Analysis PDF Author: Abul Hasan Siddiqi
Publisher: CRC Press
ISBN: 0824756622
Category : Mathematics
Languages : en
Pages : 536

Get Book Here

Book Description
The methods of functional analysis have helped solve diverse real-world problems in optimization, modeling, analysis, numerical approximation, and computer simulation. Applied Functional Analysis presents functional analysis results surfacing repeatedly in scientific and technological applications and presides over the most current analytical and numerical methods in infinite-dimensional spaces. This reference highlights critical studies in projection theorem, Riesz representation theorem, and properties of operators in Hilbert space and covers special classes of optimization problems. Supported by 2200 display equations, this guide incorporates hundreds of up-to-date citations.

Wavelets

Wavelets PDF Author: Charles K. Chui
Publisher: SIAM
ISBN: 9780898719727
Category : Mathematics
Languages : en
Pages : 228

Get Book Here

Book Description
Wavelets continue to be powerful mathematical tools that can be used to solve problems for which the Fourier (spectral) method does not perform well or cannot handle. This book is for engineers, applied mathematicians, and other scientists who want to learn about using wavelets to analyze, process, and synthesize images and signals. Applications are described in detail and there are step-by-step instructions about how to construct and apply wavelets. The only mathematically rigorous monograph written by a mathematician specifically for nonspecialists, it describes the basic concepts of these mathematical techniques, outlines the procedures for using them, compares the performance of various approaches, and provides information for problem solving, putting the reader at the forefront of current research.

Variational Methods in Imaging

Variational Methods in Imaging PDF Author: Otmar Scherzer
Publisher: Springer Science & Business Media
ISBN: 0387309314
Category : Mathematics
Languages : en
Pages : 323

Get Book Here

Book Description
This book is devoted to the study of variational methods in imaging. The presentation is mathematically rigorous and covers a detailed treatment of the approach from an inverse problems point of view. Many numerical examples accompany the theory throughout the text. It is geared towards graduate students and researchers in applied mathematics. Researchers in the area of imaging science will also find this book appealing. It can serve as a main text in courses in image processing or as a supplemental text for courses on regularization and inverse problems at the graduate level.

Isogeometric Analysis and Applications 2014

Isogeometric Analysis and Applications 2014 PDF Author: Bert Jüttler
Publisher: Springer
ISBN: 3319233157
Category : Mathematics
Languages : en
Pages : 301

Get Book Here

Book Description
Isogeometric Analysis is a groundbreaking computational approach that promises the possibility of integrating the finite element method into conventional spline-based CAD design tools. It thus bridges the gap between numerical analysis and geometry, and moreover it allows to tackle new cutting edge applications at the frontiers of research in science and engineering. This proceedings volume contains a selection of outstanding research papers presented at the second International Workshop on Isogeometric Analysis and Applications, held at Annweiler, Germany, in April 2014.

Wavelet Analysis and Applications

Wavelet Analysis and Applications PDF Author: Dong-Gao Deng
Publisher: American Mathematical Soc.
ISBN: 0821829912
Category : Mathematics
Languages : en
Pages : 344

Get Book Here

Book Description
Wavelet analysis has been one of the major research directions in science in the last decade. More and more mathematicians and scientists join this exciting research area. Certainly, wavelet analysis has had a great impact in areas such as approximation theory, harmonic analysis, and scientific computation. More importantly, wavelet analysis has shown great potential in applications to information technology such as signal processing, image processing, and computer graphics. Chinahas played a significant role in this development of wavelet analysis as evidenced by many fruitful theoretical results and practical applications. A conference on wavelet analysis and its applications was organized to exchange ideas and results with international research groups at ZhongshanUniversity (Guangzhou, China). This volume contains the proceedings from that conference. Comprised here are selected papers from the conference, covering a wide range of research topics of current interest. Many significant results are included in the study of refinement equations and refinable functions, properties and construction of wavelets, spline wavelets, multi-wavelets, wavelet packets, shift-invariant spaces, approximation schemes and subdivision algorithms, and tilings. Severalpapers also focus on applications of wavelets to numerical solutions of partial differential equations and integral equations, image processing and facial recognition, computer vision, and feature extraction from data.