Wave Functions and Scalar Products in the Bethe Ansatz

Wave Functions and Scalar Products in the Bethe Ansatz PDF Author: Benoît Vallet
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Get Book Here

Book Description
Integrable models are physical models for which some quantities can be exactly obtained, without use of perturbation theory. Those very special models are source of an increasing interest in theoretical physics. The direct applications in condensed matter physics and the subtle links evidenced more recently with some supersymmetric gauges theories motivated the development of complex mathematical tools. Among these, Bethe ansatz played an important role, and provides an efficient approach for diagonalizing a lot of models of various nature. The first chapter of this thesis is devoted to the introduction to the two approaches of the Bethe ansatz, said “coordinate” and “algebraic”, in the context of the XXX Heisenberg spin chain and a continuous spin generalization of the Totally Asymmetric Simple Exclusion Process, the so called Zero-range Chipping model with factorized steady state (ZCM). The second chapter is devoted to the Modified Algebraic Bethe Ansatz in the context of the periodic XXX chain. This modified ansatz is proposed for solving the spectral problem of the open spin chain, for which the usual ansatz fails. The scalar product of the obtained modified Bethe states is studied. The third chapter concerns the resolution of the identity and the inverse functional problem. An expression for the spin states in terms of Bethe states est presented for the ZCM, and an expression for the resolution of the identity in term of Bethe states for the infinite XXZ chain is proved, involving in both cases the contribution of bound states. At last, the fourth chapter concerns determinant representations in the Bethe ansatz. An expression for the “matrix elements of the particle number operator” for the delta-Bose gas in terms of a determinant is proved, and some integral representations for the Izergin-Korepin and Slavnov determinants are investigated, then establishing a new formal link between these two determinant representations.