Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1482216191
Category : Science
Languages : en
Pages : 440
Book Description
This text describes water's use in the production of raw fuels, as an energy carrier (e.g., hot water and steam), and as a reactant, reaction medium, and catalyst for the conversion of raw fuels to synthetic fuels. It explains how supercritical water is used to convert fossil- and bio-based feedstock to synthetic fuels in the presence and absence of a catalyst. It also explores water as a direct source of energy and fuel, such as hydrogen from water dissociation, methane from water-based clathrate molecules, and more.
Water for Energy and Fuel Production
Author: Yatish T. Shah
Publisher: CRC Press
ISBN: 1482216191
Category : Science
Languages : en
Pages : 440
Book Description
This text describes water's use in the production of raw fuels, as an energy carrier (e.g., hot water and steam), and as a reactant, reaction medium, and catalyst for the conversion of raw fuels to synthetic fuels. It explains how supercritical water is used to convert fossil- and bio-based feedstock to synthetic fuels in the presence and absence of a catalyst. It also explores water as a direct source of energy and fuel, such as hydrogen from water dissociation, methane from water-based clathrate molecules, and more.
Publisher: CRC Press
ISBN: 1482216191
Category : Science
Languages : en
Pages : 440
Book Description
This text describes water's use in the production of raw fuels, as an energy carrier (e.g., hot water and steam), and as a reactant, reaction medium, and catalyst for the conversion of raw fuels to synthetic fuels. It explains how supercritical water is used to convert fossil- and bio-based feedstock to synthetic fuels in the presence and absence of a catalyst. It also explores water as a direct source of energy and fuel, such as hydrogen from water dissociation, methane from water-based clathrate molecules, and more.
Water Quality Impacts of the Energy-Water Nexus
Author: Avner Vengosh
Publisher: Cambridge University Press
ISBN: 1009063995
Category : Science
Languages : en
Pages : 321
Book Description
Energy and water have been fundamental to powering the global economy and building modern society. This cross-disciplinary book provides an integrated assessment of the different scientific and policy tools around the energy-water nexus. It focuses on how water use, and wastewater and waste solids produced from fossil fuel energy production affect water quality and quantity. Summarizing cutting edge research, it describes the scientific methods for detecting contamination sources in the context of policy and regulations. The authors highlight the growing evidence that fossil fuel production, from both conventional and unconventional sources, leads to water quality degradation, while regulations for the water and energy sector remain fractured and highly variable across and within countries. This volume will be a key reference for scholars, industry professionals, environmental consultants and policy makers seeking information on the risks associated with the energy cycle and its impact on the environment, particularly water resources.
Publisher: Cambridge University Press
ISBN: 1009063995
Category : Science
Languages : en
Pages : 321
Book Description
Energy and water have been fundamental to powering the global economy and building modern society. This cross-disciplinary book provides an integrated assessment of the different scientific and policy tools around the energy-water nexus. It focuses on how water use, and wastewater and waste solids produced from fossil fuel energy production affect water quality and quantity. Summarizing cutting edge research, it describes the scientific methods for detecting contamination sources in the context of policy and regulations. The authors highlight the growing evidence that fossil fuel production, from both conventional and unconventional sources, leads to water quality degradation, while regulations for the water and energy sector remain fractured and highly variable across and within countries. This volume will be a key reference for scholars, industry professionals, environmental consultants and policy makers seeking information on the risks associated with the energy cycle and its impact on the environment, particularly water resources.
Water, Energy, and Environment – A Primer
Author: Allan R. Hoffman
Publisher: IWA Publishing
ISBN: 1780409648
Category : Nature
Languages : en
Pages : 216
Book Description
'We are experiencing the beginning of an energy revolution in these early years of the 21st century.' Water, Energy, and Environment - A Primer provides an introduction to, and explanation of, this revolution.
Publisher: IWA Publishing
ISBN: 1780409648
Category : Nature
Languages : en
Pages : 216
Book Description
'We are experiencing the beginning of an energy revolution in these early years of the 21st century.' Water, Energy, and Environment - A Primer provides an introduction to, and explanation of, this revolution.
Renewable Energy and Wildlife Conservation
Author: Christopher E. Moorman
Publisher: JHU Press
ISBN: 1421432730
Category : Science
Languages : en
Pages : 279
Book Description
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Publisher: JHU Press
ISBN: 1421432730
Category : Science
Languages : en
Pages : 279
Book Description
Brings together disparate conversations about wildlife conservation and renewable energy, suggesting ways these two critical fields can work hand in hand. Renewable energy is often termed simply "green energy," but its effects on wildlife and other forms of biodiversity can be quite complex. While capturing renewable resources like wind, solar, and energy from biomass can require more land than fossil fuel production, potentially displacing wildlife habitat, renewable energy infrastructure can also create habitat and promote species health when thoughtfully implemented. The authors of Renewable Energy and Wildlife Conservation argue that in order to achieve a balanced plan for addressing these two crucially important sustainability issues, our actions at the nexus of these fields must be directed by current scientific information related to the ecological effects of renewable energy production. Synthesizing an extensive, rapidly growing base of research and insights from practitioners into a single, comprehensive resource, contributors to this volume • describe processes to generate renewable energy, focusing on the Big Four renewables—wind, bioenergy, solar energy, and hydroelectric power • review the documented effects of renewable energy production on wildlife and wildlife habitats • consider current and future policy directives, suggesting ways industrial-scale renewables production can be developed to minimize harm to wildlife populations • explain recent advances in renewable power technologies • identify urgent research needs at the intersection of renewables and wildlife conservation Relevant to policy makers and industry professionals—many of whom believe renewables are the best path forward as the world seeks to meet its expanding energy needs—and wildlife conservationists—many of whom are alarmed at the rate of renewables-related habitat conversion—this detailed book culminates with a chapter underscoring emerging opportunities in renewable energy ecology. Contributors: Edward B. Arnett, Brian B. Boroski, Regan Dohm, David Drake, Sarah R. Fritts, Rachel Greene, Steven M. Grodsky, Amanda M. Hale, Cris D. Hein, Rebecca R. Hernandez, Jessica A. Homyack, Henriette I. Jager, Nicole M. Korfanta, James A. Martin, Christopher E. Moorman, Clint Otto, Christine A. Ribic, Susan P. Rupp, Jake Verschuyl, Lindsay M. Wickman, T. Bently Wigley, Victoria H. Zero
Biomass for Renewable Energy, Fuels, and Chemicals
Author: Donald L. Klass
Publisher: Elsevier
ISBN: 0080528058
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience
Publisher: Elsevier
ISBN: 0080528058
Category : Technology & Engineering
Languages : en
Pages : 669
Book Description
Biomass for Renewable Energy, Fuels, and Chemicals serves as a comprehensive introduction to the subject for the student and educator, and is useful for researchers who are interested in the technical details of biomass energy production. The coverage and discussion are multidisciplinary, reflecting the many scientific and engineering disciplines involved. The book will appeal to a broad range of energy professionals and specialists, farmers and foresters who are searching for methods of selecting, growing, and converting energy crops, entrepreneurs who are commercializing biomass energy projects, and those involved in designing solid and liquid waste disposal-energy recovery systems. Presents a graduated treatment from basic principles to the details of specific technologies Includes a critical analysis of many biomass energy research and commercialization activities Proposes several new technical approaches to improve efficiencies, net energy production, and economics Reviews failed projects, as well as successes, and methods for overcoming barriers to commercialization Written by a leader in the field with 40 years of educational, research, and commercialization experience
Microbial Energy Conversion
Author: Zhenhong Yuan
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311042486X
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 311042486X
Category : Technology & Engineering
Languages : en
Pages : 568
Book Description
The book provides an overview on various microorganisms and their industrialization in energy conversion, such as ethanol fermentation, butanol fermentation, biogas fermentation and fossil energy conversion. It also covers microbial oil production, hydrogen production and electricity generation. The content is up to date and suits well for both researchers and industrial audiences.
Hydrogen Production Technologies
Author: Mehmet Sankir
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Publisher: John Wiley & Sons
ISBN: 1119283655
Category : Science
Languages : en
Pages : 653
Book Description
Provides a comprehensive practical review of the new technologies used to obtain hydrogen more efficiently via catalytic, electrochemical, bio- and photohydrogen production. Hydrogen has been gaining more attention in both transportation and stationary power applications. Fuel cell-powered cars are on the roads and the automotive industry is demanding feasible and efficient technologies to produce hydrogen. The principles and methods described herein lead to reasonable mitigation of the great majority of problems associated with hydrogen production technologies. The chapters in this book are written by distinguished authors who have extensive experience in their fields, and readers will have a chance to compare the fundamental production techniques and learn about the pros and cons of these technologies. The book is organized into three parts. Part I shows the catalytic and electrochemical principles involved in hydrogen production technologies. Part II addresses hydrogen production from electrochemically active bacteria (EAB) by decomposing organic compound into hydrogen in microbial electrolysis cells (MECs). The final part of the book is concerned with photohydrogen generation. Recent developments in the area of semiconductor-based nanomaterials, specifically semiconductor oxides, nitrides and metal free semiconductor-based nanomaterials for photocatalytic hydrogen production are extensively discussed.
Water for Energy and Fuel Production
Author: Yatish T. Shah
Publisher:
ISBN: 9781306866491
Category : Energy industries
Languages : en
Pages : 436
Book Description
"Water in all its forms may be the most important solvent in the development of the new "Energy Economy". This book illustrates that as energy and fuel industries diversify, we are transitioning to an economy where water will play a more and more important role in the supply of energy and fuels. It discusses the role of water in the production of raw fuels such as oil, gas, coal, uranium, and biomass. It also describes methods for how supercritical water and steam are vital for the conversion of raw fuels to synthetic fuels."--
Publisher:
ISBN: 9781306866491
Category : Energy industries
Languages : en
Pages : 436
Book Description
"Water in all its forms may be the most important solvent in the development of the new "Energy Economy". This book illustrates that as energy and fuel industries diversify, we are transitioning to an economy where water will play a more and more important role in the supply of energy and fuels. It discusses the role of water in the production of raw fuels such as oil, gas, coal, uranium, and biomass. It also describes methods for how supercritical water and steam are vital for the conversion of raw fuels to synthetic fuels."--
Energy and Civilization
Author: Vaclav Smil
Publisher: MIT Press
ISBN: 0262536161
Category : Science
Languages : en
Pages : 564
Book Description
A comprehensive account of how energy has shaped society throughout history, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. "I wait for new Smil books the way some people wait for the next 'Star Wars' movie. In his latest book, Energy and Civilization: A History, he goes deep and broad to explain how innovations in humans' ability to turn energy into heat, light, and motion have been a driving force behind our cultural and economic progress over the past 10,000 years. —Bill Gates, Gates Notes, Best Books of the Year Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. In this monumental history, Vaclav Smil provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. Smil describes humanity's energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview. This book is an extensively updated and expanded version of Smil's Energy in World History (1994). Smil has incorporated an enormous amount of new material, reflecting the dramatic developments in energy studies over the last two decades and his own research over that time.
Publisher: MIT Press
ISBN: 0262536161
Category : Science
Languages : en
Pages : 564
Book Description
A comprehensive account of how energy has shaped society throughout history, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. "I wait for new Smil books the way some people wait for the next 'Star Wars' movie. In his latest book, Energy and Civilization: A History, he goes deep and broad to explain how innovations in humans' ability to turn energy into heat, light, and motion have been a driving force behind our cultural and economic progress over the past 10,000 years. —Bill Gates, Gates Notes, Best Books of the Year Energy is the only universal currency; it is necessary for getting anything done. The conversion of energy on Earth ranges from terra-forming forces of plate tectonics to cumulative erosive effects of raindrops. Life on Earth depends on the photosynthetic conversion of solar energy into plant biomass. Humans have come to rely on many more energy flows—ranging from fossil fuels to photovoltaic generation of electricity—for their civilized existence. In this monumental history, Vaclav Smil provides a comprehensive account of how energy has shaped society, from pre-agricultural foraging societies through today's fossil fuel–driven civilization. Humans are the only species that can systematically harness energies outside their bodies, using the power of their intellect and an enormous variety of artifacts—from the simplest tools to internal combustion engines and nuclear reactors. The epochal transition to fossil fuels affected everything: agriculture, industry, transportation, weapons, communication, economics, urbanization, quality of life, politics, and the environment. Smil describes humanity's energy eras in panoramic and interdisciplinary fashion, offering readers a magisterial overview. This book is an extensively updated and expanded version of Smil's Energy in World History (1994). Smil has incorporated an enormous amount of new material, reflecting the dramatic developments in energy studies over the last two decades and his own research over that time.
Environmental Engineering for the 21st Century
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
ISBN: 0309476550
Category : Technology & Engineering
Languages : en
Pages : 125
Book Description
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Publisher: National Academies Press
ISBN: 0309476550
Category : Technology & Engineering
Languages : en
Pages : 125
Book Description
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.