Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Clifford Algebra to Geometric Calculus
Author: David Hestenes
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Publisher: Springer Science & Business Media
ISBN: 9789027725615
Category : Mathematics
Languages : en
Pages : 340
Book Description
Matrix algebra has been called "the arithmetic of higher mathematics" [Be]. We think the basis for a better arithmetic has long been available, but its versatility has hardly been appreciated, and it has not yet been integrated into the mainstream of mathematics. We refer to the system commonly called 'Clifford Algebra', though we prefer the name 'Geometric Algebra' suggested by Clifford himself. Many distinct algebraic systems have been adapted or developed to express geometric relations and describe geometric structures. Especially notable are those algebras which have been used for this purpose in physics, in particular, the system of complex numbers, the quaternions, matrix algebra, vector, tensor and spinor algebras and the algebra of differential forms. Each of these geometric algebras has some significant advantage over the others in certain applications, so no one of them provides an adequate algebraic structure for all purposes of geometry and physics. At the same time, the algebras overlap considerably, so they provide several different mathematical representations for individual geometrical or physical ideas.
Vector and Geometric Calculus
Author: Alan Macdonald
Publisher: Createspace Independent Publishing Platform
ISBN: 9781480132450
Category : Calculus
Languages : en
Pages : 0
Book Description
This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College
Publisher: Createspace Independent Publishing Platform
ISBN: 9781480132450
Category : Calculus
Languages : en
Pages : 0
Book Description
This textbook for the undergraduate vector calculus course presents a unified treatment of vector and geometric calculus. This is the printing of August 2022. The book is a sequel to the text Linear and Geometric Algebra by the same author. That text is a prerequisite for this one. Its web page is at faculty.luther.edu/ macdonal/laga. Linear algebra and vector calculus have provided the basic vocabulary of mathematics in dimensions greater than one for the past one hundred years. Just as geometric algebra generalizes linear algebra in powerful ways, geometric calculus generalizes vector calculus in powerful ways. Traditional vector calculus topics are covered, as they must be, since readers will encounter them in other texts and out in the world. Differential geometry is used today in many disciplines. A final chapter is devoted to it. Download the book's table of contents, preface, and index at the book's web site: faculty.luther.edu/ macdonal/vagc. From a review of Linear and Geometric Algebra: Alan Macdonald's text is an excellent resource if you are just beginning the study of geometric algebra and would like to learn or review traditional linear algebra in the process. The clarity and evenness of the writing, as well as the originality of presentation that is evident throughout this text, suggest that the author has been successful as a mathematics teacher in the undergraduate classroom. This carefully crafted text is ideal for anyone learning geometric algebra in relative isolation, which I suspect will be the case for many readers. -- Jeffrey Dunham, William R. Kenan Jr. Professor of Natural Sciences, Middlebury College
Geometric Algebra for Computer Science
Author: Leo Dorst
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Publisher: Elsevier
ISBN: 0080553109
Category : Juvenile Nonfiction
Languages : en
Pages : 664
Book Description
Until recently, almost all of the interactions between objects in virtual 3D worlds have been based on calculations performed using linear algebra. Linear algebra relies heavily on coordinates, however, which can make many geometric programming tasks very specific and complex-often a lot of effort is required to bring about even modest performance enhancements. Although linear algebra is an efficient way to specify low-level computations, it is not a suitable high-level language for geometric programming. Geometric Algebra for Computer Science presents a compelling alternative to the limitations of linear algebra. Geometric algebra, or GA, is a compact, time-effective, and performance-enhancing way to represent the geometry of 3D objects in computer programs. In this book you will find an introduction to GA that will give you a strong grasp of its relationship to linear algebra and its significance for your work. You will learn how to use GA to represent objects and perform geometric operations on them. And you will begin mastering proven techniques for making GA an integral part of your applications in a way that simplifies your code without slowing it down. * The first book on Geometric Algebra for programmers in computer graphics and entertainment computing * Written by leaders in the field providing essential information on this new technique for 3D graphics * This full colour book includes a website with GAViewer, a program to experiment with GA
Geometric Multiplication of Vectors
Author: Miroslav Josipović
Publisher: Springer Nature
ISBN: 3030017567
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
Publisher: Springer Nature
ISBN: 3030017567
Category : Mathematics
Languages : en
Pages : 258
Book Description
This book enables the reader to discover elementary concepts of geometric algebra and its applications with lucid and direct explanations. Why would one want to explore geometric algebra? What if there existed a universal mathematical language that allowed one: to make rotations in any dimension with simple formulas, to see spinors or the Pauli matrices and their products, to solve problems of the special theory of relativity in three-dimensional Euclidean space, to formulate quantum mechanics without the imaginary unit, to easily solve difficult problems of electromagnetism, to treat the Kepler problem with the formulas for a harmonic oscillator, to eliminate unintuitive matrices and tensors, to unite many branches of mathematical physics? What if it were possible to use that same framework to generalize the complex numbers or fractals to any dimension, to play with geometry on a computer, as well as to make calculations in robotics, ray-tracing and brain science? In addition, what if such a language provided a clear, geometric interpretation of mathematical objects, even for the imaginary unit in quantum mechanics? Such a mathematical language exists and it is called geometric algebra. High school students have the potential to explore it, and undergraduate students can master it. The universality, the clear geometric interpretation, the power of generalizations to any dimension, the new insights into known theories, and the possibility of computer implementations make geometric algebra a thrilling field to unearth.
Geometric Algebra for Physicists
Author: Chris Doran
Publisher: Cambridge University Press
ISBN: 1139643142
Category : Science
Languages : en
Pages : 647
Book Description
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Publisher: Cambridge University Press
ISBN: 1139643142
Category : Science
Languages : en
Pages : 647
Book Description
Geometric algebra is a powerful mathematical language with applications across a range of subjects in physics and engineering. This book is a complete guide to the current state of the subject with early chapters providing a self-contained introduction to geometric algebra. Topics covered include new techniques for handling rotations in arbitrary dimensions, and the links between rotations, bivectors and the structure of the Lie groups. Following chapters extend the concept of a complex analytic function theory to arbitrary dimensions, with applications in quantum theory and electromagnetism. Later chapters cover advanced topics such as non-Euclidean geometry, quantum entanglement, and gauge theories. Applications such as black holes and cosmic strings are also explored. It can be used as a graduate text for courses on the physical applications of geometric algebra and is also suitable for researchers working in the fields of relativity and quantum theory.
Advanced Calculus
Author: James J. Callahan
Publisher: Springer Science & Business Media
ISBN: 144197332X
Category : Mathematics
Languages : en
Pages : 542
Book Description
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
Publisher: Springer Science & Business Media
ISBN: 144197332X
Category : Mathematics
Languages : en
Pages : 542
Book Description
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincaré lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
A New Approach to Differential Geometry using Clifford's Geometric Algebra
Author: John Snygg
Publisher: Springer Science & Business Media
ISBN: 081768283X
Category : Mathematics
Languages : en
Pages : 472
Book Description
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Publisher: Springer Science & Business Media
ISBN: 081768283X
Category : Mathematics
Languages : en
Pages : 472
Book Description
Differential geometry is the study of the curvature and calculus of curves and surfaces. A New Approach to Differential Geometry using Clifford's Geometric Algebra simplifies the discussion to an accessible level of differential geometry by introducing Clifford algebra. This presentation is relevant because Clifford algebra is an effective tool for dealing with the rotations intrinsic to the study of curved space. Complete with chapter-by-chapter exercises, an overview of general relativity, and brief biographies of historical figures, this comprehensive textbook presents a valuable introduction to differential geometry. It will serve as a useful resource for upper-level undergraduates, beginning-level graduate students, and researchers in the algebra and physics communities.
Student Solution Manual to Accompany the 4th Edition of Vector Calculus, Linear Algebra, and Differential Forms, a Unified Approach
Author: John Hamal Hubbard
Publisher:
ISBN: 9780971576674
Category : Algebras, Linear
Languages : en
Pages : 284
Book Description
Publisher:
ISBN: 9780971576674
Category : Algebras, Linear
Languages : en
Pages : 284
Book Description
Vector Analysis Versus Vector Calculus
Author: Antonio Galbis
Publisher: Springer Science & Business Media
ISBN: 1461422000
Category : Mathematics
Languages : en
Pages : 383
Book Description
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
Publisher: Springer Science & Business Media
ISBN: 1461422000
Category : Mathematics
Languages : en
Pages : 383
Book Description
The aim of this book is to facilitate the use of Stokes' Theorem in applications. The text takes a differential geometric point of view and provides for the student a bridge between pure and applied mathematics by carefully building a formal rigorous development of the topic and following this through to concrete applications in two and three variables. Key topics include vectors and vector fields, line integrals, regular k-surfaces, flux of a vector field, orientation of a surface, differential forms, Stokes' theorem, and divergence theorem. This book is intended for upper undergraduate students who have completed a standard introduction to differential and integral calculus for functions of several variables. The book can also be useful to engineering and physics students who know how to handle the theorems of Green, Stokes and Gauss, but would like to explore the topic further.
An Introduction to Geometric Algebra and Geometric Calculus
Author: Michael D Taylor
Publisher:
ISBN: 9781736526903
Category :
Languages : en
Pages : 318
Book Description
This is an introduction to geometric algebra in n-dimensional Euclidean space and its application to manifolds and to calculus on manifolds. The treatment is moderately rigorous and is suitable for advanced undergraduates and beginning graduate students in mathematics though it should also be accessible to well-prepared students in physics, engineering, computer science, statistics, etc. Preparation in linear algebra and multivariable analysis as encountered in calculus as well as a modest amount of mathematical maturity should be sufficient.
Publisher:
ISBN: 9781736526903
Category :
Languages : en
Pages : 318
Book Description
This is an introduction to geometric algebra in n-dimensional Euclidean space and its application to manifolds and to calculus on manifolds. The treatment is moderately rigorous and is suitable for advanced undergraduates and beginning graduate students in mathematics though it should also be accessible to well-prepared students in physics, engineering, computer science, statistics, etc. Preparation in linear algebra and multivariable analysis as encountered in calculus as well as a modest amount of mathematical maturity should be sufficient.